Netlogo <=5

NetLogo 3.1.1 User Manual

NetLogo 3.1.1 User Manual

Table of Contents

What 1S NEILOGO? ..coeeeiiiiiiiiieee e, 1
== L0 =Y 1
(@F0] oXVA 1o |10 1100102 7= LA L0 o NP 3
B o110 I ooV VA [T =T TP 3

RTAT AT T NN 7
Version 3.1.1 (JUN@ 16, 2006).......ccceeeiiiiiiiiei e ee et a————— 7
Version 3.1 (ApPFil 14, 2006).......ccccoeiiiiii i —————————————— 7
Version 3.0 (September 2005).......cooiiiiiiii i ———————————— 9
Version 2.1 (December 2004)........ccooiiiiiiei oo 10
Version 2.0.2 (AUQUSE 2004).......cccoiieiieeeiee e e e e e ee e ————————————a—————rra——n 10
Version 2.0 (December 2003)......cccooiiieiiiii e 10
Version 1.3 (JUNE 2003)......ccciiiiiieiieetiee s eee e e ee e e et e e e e ——————————————————ha—rnnrrnnrrrrrrnrre 11
Version 1.2 (March 2003)......cccoiiiiiiieiieeseee s e e e e e e e e bbb e an e nnranrean e rrrrrrne 11
Version 1.1 (JUIY 2002)......ccouuuiiiieiieieii e ee e e e et e e s e e e e e s et e e e eaba e e sesba e esesbaeesserbaaeeeenes 11
Version 1.0 (APFL 2002)......ccciiiiiiie e ies oo cee e —— b ———— b ——————————r—ran 11
SYSLEM REQUITEIMENTS ... aa e e et e et e e e eaaeease s s eeeses s e s s st esssss s s s s s sssssssssnsssnnnsnneens 13
System RequiremMents: APPIICALION.vvvverrreeriiiieieieeieeee e e ee e e e e e e e e e e e e e e e eeeeeraeeaeeeeeeees 13

RTAT AT [0 R 13

Y=o O ST TR 13

Y F= ol @ ISR oI T o I TR 13

L@ 10T o] F= L {0 0 PP PPPPPP 13

System Requirements: SaVed APPIELS.uvueiiiiiiiiiiiiiieeeeeeeeeeeee et 14
System RequIreMENES: 3D VIBW......uuuiieiiieiiieeiierieeeeeieeeereeeeeeeeeeeeeereerereereerereereerereereetsertereseees 14
(@01 = LT 1o TSN VA1 (=) 101 PP 14

LCT7=T o] A TTo3 S O - [PPPPPPP 14

| od (=Y =T a1 1 100 [T 15

Library CONFlICES. ...ccvviiiiiiiieiieeeeeeeeeee e 15

Removing an 0ld JOGL........coviiiiiiiiiie e, 15

L0 Y T ST ST U T 17
KNowWn bugs (@l SYSLEMS)......ccoiiiiiieie i iee e et an s e eneennrannrrnnee 17
WiNAOWS=0NIY BUGS ... oo iiiiiee i iee e e ees et b s et b et e b beesbesssssssnnssennnnnsees 17
MacintoSh—0nIY BUGS..........coooiiii i bbb e eeeeererasranrseeeees 17
LINUX/UNIX=0NIY BUGS.cooiiiiiiiiiie oottt a e st e s b e s eessessssenssennees 18

Known issues with computer HUBNEL.............oooiiiiiiiiiici e 18
Unimplemented StarLogoT PrimitiVES.........ccovveiiieiieeeeeeeeeeee e, 18
(7o) 0] =Y 11T T 1P 21
RTA L] ST 1 < 21
Feedback, QUESHIONS, ETC....cciiiiiiiiiieiiiiiee ettt et e e e e e e e et e e e e e e e e e esrbb e e eas 21
=T 010 10 o T = T T PSP 21

STz 1] 0 [TV [To [N = U /2SR 23
A= B = T Y/ PP 23

NetLogo 3.1.1 User Manual

Table of Contents

Sample Model: Party

Thinking WIth IMOAEIS.......uuuuuuiiiiiiiiiiiiiiiiiiti it aaees b eessessssssessssssssssssssssnssensnnnsnes 26
RTAT T2 T AN Lo 26
BT = 30 Y (o T L= £ 27
Sample Model: WoIf Sheep Predation.............ueeeeeeieeiieeiiieiieecieeeeeeeeeeeeee e eee e e ee e 27
Controlling the MOdel: BULIONSuuviiiiiiieiiiieiieiieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeeeeeeaeeaaeeaeeeaeees 28
Adjusting Settings: Sliders and SWItCHESccoiiiiiiiiiii e 29
Gathering Information: PIotS and MORNITOIS.uuviiiiiieiiieiieeieeeeeeeeeeeeeeeeeeeeee e ee e e e e e e e e e e eeeeeeees 31
I [0 £ 31
0] 110 YR 31

(70 a1 (0] |ITaTo LA TSIAN A= PSPPSR 31
LI L= oY =Y FoT T o= PRSPPI 35
SAMPIE MOAEIS. bbb bbbt e bt e et e e e s st eea b s e et eeetentrennnnnnrnenees 36

(@A U [1ot U1 F=Y Y [o o [£ 36
(OT0T0 LI Y= 1111 0] =1 PP PPPPPP 36
HubNet Calculator & Computer ACHVILIES..........ccovvviiiiiieiieee e, 36

RTAT T2 T AN Lo A 36
Tutorial #2: COMMABNASuuuiiiiiii e it e e e et e e e et e e e s et e e st et e e e eebb e eeeata s eessabaeeseabansesseranseens 37
Sample Model: TraffiC BASIC.....uuuuuuuureiieeiiiiiiiiiiiiieeeieeeeeeeeeeeeee e ee e e e e ee e e e e e e ee e e e e e eeeeeeeeaeaaeeaaaaaaeees 37
R ATSH Ofe] 0010 aF=1 010 [OF=T011=) SUPT R 37
WOrking WIth COlOIS.coiiiiiiiiie e ee e et b e e e e ee bbb e s bessssssssnssessnennees 40
Agent Monitors and Agent COMMANAEIS.......ccoiieeiieiieieeeeeieeee e aneeaneaereennennne 42
RTAT T2 T AN Lo A 45
T = I T nd 0 Tt T0 [0 | (=TT 47
ST (U] o I= T o I o PRSPPI 47
PatChes aNd VAlIADIES.........uuuuiiiiiiii ittt e ettt e et e e et e e e e et e e e s et e e s eaaa e e seebaaes 51
F N IO o 1IN o o 11 T 0 PSSP 54
Yol (S (o] Ll B I=] = V| T 58
RTAT T2 T AN Lo A 60
PN o o1 a1 ht e @ o]0 0] 0] 1] (=T @ To [t 60
[a1 =Y 7= Lo =T 10 [0 [63
LYY 1 63
1= 0T TR 65
LYY 7= Lot =T = | o 65
Working with Interface EIEMENtS...........ccoovviiiiiiiiiii, 65
Chart: INterface TOOIDAL........uuuiiiiiii it e e et e e e s e e e e e e e e e e s aaaaaes 66
THhe 2D AN 3D VIBWS. ... ciieeiiiiieitee ettt e ettt e e e e e e st e e e e e et e e s eeaaa e esseaaseeseabaaeae 67
[Of0] 0010 0= 1010 I OT=T 0] (=) A 71

I [0 £ TR 73
RaR0Yo1=Ye 11 (=TT - o 74
LaN o) d = 1T T 17 o Y 76
Information Tab MarkUp..........cooovvviiiiiiiii e, 77

RTAT N I 1 O 77

NetLogo 3.1.1 User Manual

Table of Contents

Programming GUIE.........ooviiiiiiiceee e 79
Y0 <] 1P 79
a1 0101=T0 111 =)= 80
2= 1= 1 o] (ST 82
[©F0] 0] £ 83
N 85
Y0 <] 1 ST £ PP 86
T ST 0 [88
0] 1 £ 89
SNV ATed 10T A 174 LT o PRSPPI 91
L1 92
=1 96
=T a0 (0] AN N LU 0] T £ 98
LT =TT = = PP 99
i 00T PP 99
S INgS v ttvteetteet ettt ettt e ettt ettt e et e e e et et e et e e e e et e e e e e e et e aaaaaaaaaaas 102
L W11 11 | P 103
1 TSI 1 T 104
L0 YT 105
PEISPECLIVE.o —————————— 106
9= 111V o 107
10} 0T [0 o 1Y/ PP 108
0T 112
1T 115

ST 1= T 0TI o [1 o] S 1V 1o [P 117
LT LT aTo IS =T (=Y PSPPI 117

IMPOtING SNAPEScoiiiiiiieiiieee L 117
Creating and EditiNg SHAPES........civiiiiiiiiiiiiieeeeeee e 118
0 T T 119
PrOVIBWS. ...e ettt e et e e et et e e s e e b e e e e et e e e ee b e e s ee b e e s e et e e e e ebbaaas 119
@AV L= = o] o1 Te ST A= 1T 119
010 [T 119
@70 (0] £ 119
(@ 1 TS 01U 110] T 120
ST 1= 0TI D<o o P 120
KeepIiNg @ SNAPE......ciiiiiiieeeeee e, 120
Using Shapes in @ MOAEL..........oouviiiiiiiiie 120
BehaviorSpace GUILE...........cvviiviiiiiii e 121
What is BENAVIOISPACER.o it ——————- 121
Why BEhaVIOISPACE2......cvviiiiiieeeeee e 121
[IS1 (0] ToF=1 I\ [0 (R 122
[0N YA LAY 0 T 122
Managing eXperiment SEIUDPSccivviiiiiiiiiieie e 122
Creating an eXPeriMENt SELUPD.uuuuuuuuuuurruuiuuntunreantrrrrerrrerrrrrrerrrrrr———————————————————————. 122
RUNNING @N EXPEIMENL.......cciiiiiiiiiiieieeeeeee e 125
0NV Z= o =0 1 1SV (= 125

NetLogo 3.1.1 User Manual

Table of Contents

BehaviorSpace Guide

Running from the command lINE.............covvvviiiiiiiiii 125
Setting up experiments IN XMLcccciuuuuuuiuuniineiunrerrrerrrerrrerre . —————————————————————————. 127
(@70 a1 (0| TTaTo 17 P 128

(@F0] T3 11153 o R 128
[01 01N T A 10 1T [T 129
Understanding HUBNEL...........oooiiiiiiii 129
L2310 T [0 PP 129

[01 0 N AN o] 411 (o1 (| = 129
(70 n0] o101 (=) ol = 111 0] L= USSR 130
o LAY (TN 130
REQUITEMENTSceiiiiiiiiieeeeee e, 130
1= Lo (] o = = od (171X 130

[101 0]\ A OF0] 1 (o] O]] (=] S 131
TroUBIESNOOLING.ccc oo ———————— 131
QoY T T =Y 10 N 132

(OF= o101 F= 1o]l [V o]\ 133
REQUITEMENTS....coiiiiiiiiieeeeeeeeee e, 133
=T Vo] A1 LTS 110 o T 133
HubNet AUthOrNG GUIAE..........coei e nananes 133
LT utTaTo I aT=) o TSP 133
HubNet AUthOring GUIAE..........ooviiiiiiiiieie e, 135
General HUDNEt INfOrMALION.uu.iiieiii it e e e e et e e e e e e e e eaa s 135
AT (0 o T T 1T AT 135
Y <1 18] PP 135

D Fo Y=) A1 = 101 10 136
Y=Y 0 [T T = L= P 137
EXAMPIES. ..cooeiiieeieeeeeeee e, 138
Calculator HUDNEL INfOIMALIONccuueieiiii e ee et e e e e e e e e e e e s e eaa s 138
= 1Yo PP 138
Computer HUbNet INfOrMation...........cvvveiviiiiiiiiiiiiiicceeceeeeeeeeee e, 139
How To Make an Interface for @ ClIENT.........ooioiieviiiiiiiiee e 139
View Updates 0n the CHENLS........ccooviiiiiiiiiieee e 140
Plot Updates 0n the ClENES.........ccovviiiiiiiiiiieeiee e, 141
Clicking in the VIEW ON ClIENLSuuuuuuuiuuiiuuiiieiineiuntenrrerrrerrresresrresraeerresee——————————————————. 141
Text Area for Input and DISPIAY.........ccoeeeeiiii i 141
=T ISY 18] A ST C 10 1o [T 143
USING EXIENSIONS.cciiiiiiiiiieeieeeeeee e, 143
ADPPIBLS ..o 144
WIHEING EXIENSIONS. ... e et naaannnnne 144
R0 TSP 144
T 1o = 144
Extension developmeNnt fiPS.........cvviiiiiiiiiiiiiiiieeeeeee e, 147

[@F0] T3 1113 o] 148

NetLogo 3.1.1 User Manual

Table of Contents

(@70 a1 (o] | TTaTo T CTU o =P 149
NOLE ON MEMIOIY USAQE. .. eteeruueetetuueeteettrearettasaeeetunaetersa e teereaaaestaeeretnnaerenneereeraraaaees 149
Example (With GUI).......cooooiii e 149
EXample (NEAAIESS).......ccoe e ————————— 150
BEhAVIOISPACE. ... ———————— 151
(@ 11T @ 01 (10 2 TSP PP PP 152
(@F0] T3 11153 o R 152

(CT0] Lo (=) 1510] o 153
What iS the GOGO BOAIA?Zuuiiiiiiii ittt e et e e et e e e et e e e s et e e s eaaaeeseebanseaeees 153
How to get @ GOGO BOAIA2.......ccooei it 153
Installing the GOGO EXLENSION.......cccoeeiiie it 153

= To O 1S 153
RTAT AT aT0 [0 = 154
A1) =T aTo I | T £ 154
Using the GOGO EXIENSION.........ccviiiiiiieiieeieeeeeee e, 154
a0 AT 1A YT 155
[0 00 0 o 01 = P 155
[0 1010 [0 0] 6] 1 PSP 155
[0 1010 [0 0] 6] 1 1/ U 155
0 1010 [0 e 00 1 SR 155
(o 11110 U] el 0 010 T 11 AP 156
(o014 101 G 010 1) 1 P 156
(o101 01U el 00 (=1 VA =) £ = 156
(1014101 G 010 1t 10 F= 1 A0 AT IS VLV P 156
talk—tO—OUIPUI=POIES. ... 156
o110 USSP 157
LYY ST N 157
oY=k 10110 U1 G 010 1 G 01011177 158

ST o1 U0 I A (=Y 0 T 0] 159
Using the Sound EXIENSION...........coviiiiiiiiiiieeeeee e, 159
a0 811 LYY 159

o L0 T 159
LTS (AU A1) 01 YRR 159
]P0 | (11 PP 160
0] Fo Y 10 (= PP 160
LY 0= 1 G 110 (N 160
o1 0] 116] (<SR 160
SIOP—INSITUMENE. ... 161
SIOP=IMUSIC ... ——————————————————— 161
ST o1 Ul a0 I aF=T 00 1ST 161
DT 1 161
S U EINES. .. et eie ettt ettt et et e et e e e e e et e e b e e e e et e e b e ea e ea e en e en e eneenennss 161

FAQ (Frequently ASKEd QUESLIONS)cocvvuniiiiiiiiie it e et et e e et s e s e et s e e s eaa e e s eabaseeseebaaeeaees 165

(@ 1011 110 Fo ORI 165
LT 1<) = | 165

EA

Vi

NetLogo 3.1.1 User Manual

Table of Contents

Frequently Asked Questions

DOWNIOAAING. «..ceveeeeeiieieeeeeee e, 165
ADPPIBLS ..o 165
LS T =PRI 165
BehaVIOISPACE.oiiiiiieeieeeeee 166
PrOQramMING....cccceviiiiiieiiieeeeee e 166
(CT=T 1<) = | A 167
Why is it called NEtLOGO?.....cvviviiieiiiieieee e 167
What programming language was NetLodo Written in?...........ccccceevveviieiiiiiiiiee 167
How do | cite NetLogo in an academic publication?............cccccccevvivviiiiiiiiiiiieeee 167
How do | cite a model from the Models Library in a publication?..........cccccccvvvvviiinnnnn. 167
What license is NetlLogo released under? Are there are any legal restrictions on
R ST L=T0 R (] 01U 1 T0]) (0T 167
Is the source code to Netlogo available?.........ccccvvviiiiii 167
Do you offer any workshops or other training opportunities for NetLogo?.................... 168
What's the difference between StarLogo, MacStarLogo, StarLogoT, and NetL0go?....168
Has anyone built a model Of SX>2...cooiiiiiiiiii 168
Are NetlLogo models runs scientifically reproducible?............ccccccvvvviiiiiiiiii 168
Are there any NetLogo teXtbOOKS2......cocvvviiiiiiiii 169
Is Netlogo available in a Spanish version. German version. (your language here
AL 61 (0] TR 1 (o 169
Is NetLogo compiled Or iINtErPreted?.......cccvvvviiiiiiiiiiiieeeeee e, 169
Will NetLogo and NetLogo 3D remain SEparate?........cccccevveeiieiiieiiieiieeeeeeeeeeeeeee e, 169
DOWNIOAAING.cco i oo ——————————————— 170
The download form doesn't work for me. Can | have a direct link to the software?...... 170
Downloading NetlLogo takes too long. Is it available any other way, such as on a
O 170
| downloaded and installed NetLogo but the Models Library has few or no models
T (o)A o= Y I I 1) 1 T T 170
Can | have multiple versions of NetLogo installed at the same time?2...........ccccvvvvvvnnnn. 170
I'm on a UNIX system and | can't untar the download. Why?..........c..ccccevviviiiiiinninnnnn. 170
How do | install NetLogo on Windows 2003 or Windows Server 20032.........cccccoeee.e... 170
N 0] 0] = 171
| tried to run one of the applets on yvour site, but it didn't work. What should | do?....... 171
Can | make my model available as an applet while keeping the code secret?............. 171
Can a model saved as an applet use import-world, file—open, and other commands
LU= M C=Ys 10 IR (S ToX 171
057210 = PSR 172
Can | run NetLogo from @ CD2........uuuuuuiuiiiiiiiiuiiuiiuuteiraeererrrrrrrarrrrsr ... 172
Why is NetlLogo so much slower when | unplug my 1[aptop2.........ccceeeeeeieiieee, 172
How do | change how many patches there ar€?........ccccccvvvvviiiiiiiie 172
Can | use the mouse to "paint” in the VIEBW?2..........uuuiiiiiiiiiiiiiiiiiiiiiiiieiiesiereeeeeeeeereeee. 172
How big can my model be? How many turtles, patches, procedures, buttons, and
S0 on can My MOdel CONAINT........ccoviiiiiiiiiiiieeeeeee e, 173
Can | import GIS data iNt0 NEtLOGO?.uuuuuuuuuuiiuiiiiiiiitiiiririirrrrrrrrrrrrrrrrrer——————————————. 173
My model runs slowly. How can | speed it UP?.......coovvvviiiiiiiiiiiiiiiieeeeeeee 174
| want to try HUBNEt. Can 12.....ooovviiiiiiiiiiieiee e 174
Can | run NetlLogo from the command line, without the GUI?...........ccccvvvvvvvviinniiiinnnnnn. 175

NetLogo 3.1.1 User Manual

Table of Contents

FAQ (Frequently Asked Questions
Can | have more than one model open at a tiME2..........uvvvvivviririiiiiiiiiiiirrrrrerreerreeree.. 175
Does NetlLogo take advantage of multiple ProCesSSOrS2.......cccvvvvvviiiiiiiiiiiiiiiiiieieeeeee 175
Can | distribute Netl. ogo model runs across a cluster of computers?........ccccvvvvvvvvnnnn. 175
Can | use max—pxcor or max—pycor, etc., as the minimum or maximum of a slider?...176
Can | change the choices in a chooser on the fly?..........cvviviiiiiiiiiiiiiiiieeeee, 176
Can | divide the code for my model up into several fileS?2.........ccccvvvvvvvivvriiiiiiiieiienienenee, 176
How do | show the legend in @ PIOt2........coovvviiiiiiiiii 176
Why does my code have strange characters in it?.........ccccccevveiviiiiiiiiieeeee 176
BEhAVIOISPACE. ... —————————— 176
How do | measure runs every NHCKS?.....ooovviiiiiiiiiiiiee 176
I'm varying a global variable | declared in the Procedures tab. but it doesn't work.
LY PP 176
(070 11710 110110 P 177
How is the NetlLogo language different from the Starl. ogoT language? How do |
convert my StarLogoT model to NetLOgO?........coooeveeiiiiii i 177
How does the Netl.ogo language differ from other LogoS?..........ccccevvvvviviiiiiiiininn. 177
My model from Netl. ogo 3.0 or earlier doesn't work (or looks funny) in 3.1. Help!........ 178
Why do | get a runtime error when | use setxy random world-width random
world—height? It Worked Defore..............uuuiiiiiiiiiiiiiiiiiiriiiiiiievier e 179
How do | take the negative of @ NUMDBEI?...........oovviviiiiii 179
My turtle moved forward 1, but it's still on the same patch. Why?..........cccccoevviin. 179
patch—ahead 1 is reporting the same patch my turtle is already standing on. Why?....180
How do | give my turtles "VIiSiON"2.......covvvviiiiiiiiiiieeeee e 180
Can agents sense what's in the drawing layer?2.........ccccvvvvvivriiiiiiiiiiiiiriirerierereereere.. 180
Does NetLogo have a command like StarlL.ogo's "grab" command?..........c.ccccceeveeenn.. 180
| tried to put —at after the name of a variable, for example variable—at —1 0. but
NetLogo won't let me. WHY NOL?..........uuuiiiiiiiiiiiiiiiiiiiiiiireviereiesveesvresssesseesseeeseeeees 181
I'm getting numbers like 0.10000000004 and 0.799999999999 instead of 0.1 and
0.8. WY oo, 181
The documentation says that random—float 1.0 might return 0.0 but will never
return 1.0. What if | want 1.0 t0 be inClUd@d2........ccuuiiiiiiiiieiiiie e, 181
How can | keep two turtles from occupying the same patch?.......cccccccvvvvivviiiiii, 181
How can | find out if a turtle iS d@ad2.........uuuiiiieieiii e 181
How do | find out how much time has passed in my model?.........cccccccvvvveviiiiiiniinnnnnnn. 181
Does NetLogo haVe ArTAYS?.....ccccvviiiiiiiiiiiiieeeeee e, 182
Does NetlLogo have associative arrays or lookup tables?..........cccccccvvvviiii. 182
How can | use different patch "neighborhoods" (circular. Von Neumann. Moore
L1 (o PSPPSR 182
Can | connect turtles with lines. to indicate connections between them?...................... 182
How can | convert an agentset to a list of agents, or vice versa?........cccccccvvvvveeinnnnn.. 182
How does Netl.ogo decide when to switch from agent to agent when running code?..183
How do | StOp fOr€aCR2...ccvveeiieeiieee 183
How do | make an empty agentSEt2.......covviviiiiiiiiiiiiie e 184
PrimitiveS DICHONAIY ...ccvvviiiiiiiiiiiieeieee et 185
Categories Of PHMITIVESccviiiiiiiiiiiieeeeeeeeee ettt 185
BT L (=) F= (Yo A 185

Vii

NetLogo 3.1.1 User Manual

Table of Contents

Primitives Dictionary

viii

Patch—related PrMItIVES.......cccoviiiiiiiiiiieieee e, 185
AQENESEL PIIMILIVES......ceviiiiiieiiieeeeee 185
(OT0] [0 o] 101 1117= P 185
Control flow and 10giC PrIMILIVES.uuuuuruiuiiiiiiiiiiiiiieieeirerrrrrarrrrr ... 186
WOrId PIMILIVEScoviieiiieiieeeeeee e 186
Perspective PrimitiVES.......c..cvviiiiiiiiiieeeiee e 186
HUBNEL PIMILIVESeeiiieeieeeeeeeeeee e, 186
INPUL/OULPUL PHIMITIVES ..cevveeiieeieee e, 186
File PIMILIVES....covieiieieieeeeeee e, 186
LISt PIMITIVES. c.ceevieeeeeee ettt 186
10T Lo I T 00 TP 186
Mathematical PrIMItIVES........ccccviiiiiiiiiiiiiie e, 187
PIOtHNG PHMILIVES ..eeeeiiieeiieeeeeeeeee e, 187
LiNK PIMITIVES. ..cevieiieeeeeeeeeee e 187
MOVIE PHIMILIVES. ...ceveeiiieiiiee ettt 187
SYSEEM PIIMIEIVES ... e e b ee s te s b e ssssasssssssessesssasssesssensseeseeeseees 187
U LA IR =Y 7= | o] [T 187
0 1 187
=1 (o] 11 187

[) 1) 188
KEYWOIAS. 188
(@0 111 =1 11 5N 188
MathematiCal CONSIANTS..........ccvuuiiiieiee e ee e e e e e e s e e s e et s e s s eaba e e e eabaans 188
23010 (e T M OT0] A1 = 0] S 188
[OF0] [0 A OF0] a1Y 7= 101 TP 188
.. 188
=1 01T 189
= 107 0 189
=10 R 189
A1V ettt e e e e e et e e et ——— et — e et —t———tta— et —aat e e et e et t e e et e e e e e e e e e e e e e e e e e e e aaaaaaaaaaaaaaaaaaaaaaas 189
Arithmetic Operators (+. *. = [. N <. > = 1=, <= ST) i 189

= 1T 1 1 RPN 190
=1 SR 190

= G 010 110 TP 190
F=1 7= 1 TR 191

= 0100 o]0 | 6P 191
P00 0](0) b 0 187- VU1 (0][0 i 0] 0 P 191
.. 192
= (0 < o] <R 192
[T o USSP 192
01011 =) 11 Y 192
(=TT 0 N TR 193
(=TT 0 N TR 193
W s 116X 8 0l 01U s F= 1Yl o] TR 194
... 194
(o= 1 e 1110111 =20 194
(0= 1= 101 4P 194

NetLogo 3.1.1 User Manual

Table of Contents

Primitives Dictionary

o311 0T PP 195
(o1 [SY= L= | 7= 195
(o L= = 1| e 0] 01 >N 195
(o L= st @ L17= 1177110 1N o o AP 195
(o3 L= s 00110 | P 195
(o L= 0T 1 (0] 1110 o P 196
(03 L= s 0] 01 P 196
[0 [SY= Lt 1111 Y0 o1 G 196
FoT] (o TR 196
o0 TR 197
(L0 1111 | RPN 197
create—<breed>-to __create—<breed>—from __create—<breed>-with...........c......... 197
create—turtles Crt Create—<bIEEASS..........iiiiieie e e 198
create—custom-turtles cct create—custom—<breeds> cct—<breeds>...............ccceeereeeee. 198
(o1 (=F=1 =t (=1 01010101 =T A aund 0110) i 0 1<) 0 PP 199
Do et e e e e e e e re e e et errar e aaaaas 200
[0 P L=t 1 10 1110 1= 200
0 1T 200
o TR0 1T 200
o TR IST T S 201
[0 15T o] 7= Y/ PP 201
[0 TS t=] o = 202
[0 1S =TT 0=/ 202
o 10111 1 202
o 10 1YY 1 203
0 0 Y PP 203
B e et e e e et e e e e e e e aaaaas 203
1100101 Y A7 U 203
1o TR 203
(1010 204
[T 110 2 204
(ST 00] £ 11511 10 [RPN 204
LAY 1P 205
EX[D. 1 ttttttetteetee ettt ettt e et e e e et e e et eeaeeeetee e ettt et—taa et e ettt ta et e e et aa et e e e aaas 205
export-view export=interface export—output export—plot export—all-plots
EXPOM=WOII. ... ———————— 205
S0 Q=103 b 111 206
LD L= o] 10] P 207
T 207
7210 N 207
FBC XY e ————————— 207
1T Lt =) 110 208
1T [0 1Y = 208
T[S o (0T Y=t = | 208
1T ® [(= (R 208
1TSSy Y 1Y 209
flE=0PEN. ... —————————— 209

NetLogo 3.1.1 User Manual

Table of Contents

Primitives Dictionary

IO DEINT. .. ————————————————— 209
1T (= 10 210
1 [ST (Y510 0 1= 1 =101 (=) £ YO 210
1TSS (=10 ke 11101 211
1LY 10 A 211
O YD .. ————————————— 211
LT L (= 211
L1 L= TR 212
L) AT 212
i 1o o T TR 212
10 [0 213
L0 0T e 1T 213
10T (Y= Vo] 2 213
L0 A0T7=1 (0 I 0 214
10T | OO PRTRRRPPPP 214
[T 214
[0 110 0= 1P 214
= TR 214
hatCh NatCh—<BIrEEASS....... i e e e s e e e e eaees 214
L=V [T o PP 215
1T [0 =T 17T 215
110 L= 00 T L= | TR 216
T EST (0o [ir= 0 0 0. PP 216
TS (0o L= 0 1) PP 216
10T T 217
1] o TR 217
1T] oY1= e 0] (0 =10 (0= 1= AU 217
101 0T AT=Y e 0] (0 =10 (0= 1o fek VA [1Y TR 217
10 o] aT=) ST 1= £ AT oY= 1 (= 218
100 AT St et 1SS TST= 0 [218
10 o] aT=) G (=1 0] 4 T ALY ToY= 10 (= 218
NUDNEI=MESSAQE. .. . uuiiiiiiiiiiiiiiiii ittt e e sesseesseessassseesseessssseesseesseeeeeeseeeeeees 218
NUDNEI—MESSAGE=SOUICE. uuuuiiiiiiiiiiiiiiiitieteieeereereeseeeereesrsessassseesaesssesrererareeererrereeeeeees 218
10 o] aT=) Gt AT ESST= L =i 1= Lo R 218
hubNet—MEeSSAgE—WAILING?.uuvuriiiiiiiiiiiiiiiiriirreeereieeerrerree e 219
1T 0T AT e (Y1) AT 219
1T 0T AT Y] 1 TR 219
[TU] 0T AT= oY) A1 e VA = 1 TR 220
hubNet—Set=CliENt—INLEITACEcieeee e e e e e e e e 220
| TR 220
1 TR 220
11 ST TR 221
11 Y 7= | LU L= TR 221
1] oo Gt o 1= V11T PP 222
18] 0o o Gt 000 (0] £ 222
10T 0o o G100 PP 222
10 [T TR 223

NetLogo 3.1.1 User Manual

Table of Contents

Primitives Dictionary

0750 0] =T 0] AP 235
(0070 G 0)00] B 11 F= D G 0171010 | T 235
TS | TP 235
000 1= TR 236
00100101 TR 236
1101 RPN 236
T 0] TS) AT 237
T 0 Yoo Tl 0 1T e 010 | P 237
100 o TR 237
0000 [T T TR 238
01T o [0 111 T 238
0N Y[10 (S0 TR 238
MOUSE—=XCON MOUSE Y COL .. ettertuneetertuneeseetuneeeetunaereesaaeeeessnaeeertnnaaeeesnnaerernneereernaeerens 238
AT 7= 1 [0y TR 239
A1 [0 1T = R 239

Xi

NetLogo 3.1.1 User Manual

Table of Contents

Primitives Dictionary

Xii

movie—grab-view movie—grab—interface.............cccccuurrrrrririiiriiriiiiiieeeirerereereeeeeeeeeeeeeeee 239
[0 [OAVATSToY =)t -1 1 [=1 (= TR 239
LAV = P TR 239
Ao =1 1 TR 240
0 e 0] (Y10 [240

001 | e 0] (==Y 0 S 240
0N 10 e 0] (==Y [PRSPPI 241
RNV AST= L PP 241
... 242
e o) TR 242
V75 | LU L= TR 242
[aT=T o]] o o EsT A l=T(0 | 0T o S 242
<breed>—nNeIghDOrS...... ... e e aaes 243
<breed>—nNeighbOr2.. ———————raraaraaaees 243

L= 1 fo o [o T =Y =110 o PP 244
LN Y=Y =16 TR 244
10 T 0 117 0 = Y TR 244
[10] 00T LY/ PP 244
1110 PP 245
[ET0 T I EST U 0 TP 245
... 245
e 01/ 245
0T] 246
0 TR 246
other—turtles—here other—<bre@dS>—NEIE..........coovuuiiiiiiiiieeeee e 246
(01 AT St =) 1110 S 247

(o 1W) 0T (=T=T0 B A =0 1100 PP 247

[0 1W) G 0T (=1=T0 P A =10 11010 1< PP 248
(011 | Rt] (=110 D (0 F 248
output—print output—show output=type OUtPUt=WIItE............cuvrrrmrirrirrrirrirrrinerrenrreneeeenee. 249
.. 249
071 (o] 1 PP 249
QT2 (0] = | A 1= (0 PP 249
Q=)o) = L PP 250
patch—at—heading—and—diSTANCE.............uuuuiririiriiiiiiiiiiiiieeirer ... 250
Q2L (0] e 1= = PP 250
patch-left—-and—ahead patch-right—and—ahead...............cc.cccuvvviviiiriiiiiiiiiiieieeeeeeeeee, 250
Q721 (0] 1= TP 251
Q2L (0] =Tt 10 1. PP 251
Q2L (0] =TTt 0111 WP 251
0T oT 0] [0 PP 252
pen—down pd peN—erase PE PEN=UD PU.......uuuururrrrrrrmrresrrsssrnsssssssssssssssssssssssssesssmemsere 252
QL= et 101010 [P 252
QL= Y 74 = PP 252
0172 = PP 253
o] P2 o= et oT o] [0 PP 253
0] o PSR PP 253

NetLogo 3.1.1 User Manual

Table of Contents

Primitives Dictionary

o] Lo = 111 PP 253
plot—pen—down ppd PlOt—PEN=UD PPU.......uuurrrrrrrrrrrrrrrrenrresrresrnsssssssssssssreeereeer————. 254
o] [0 0 1= T (=== PP 254
0] [0 01 PP 254
plot—x-min plot—=x—max plot=y—min PIOt=Y=MaX..........ccrrrrrrrrrrrrrrrrrrrrrrrrrrerreerreerrereeee. 254
0101 T 1110 0 PP 254
QL= 110 PP 255
EINE L1ttt e e e e e e e e e e e et e e e et et e e et e — et e e et e e e et et a e e et e e e aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaas 255
Do] S 0100] SRR 255
R e e aaaaas 256
72110 10 1 TR 256
7110 10 0 e [0 Y= L TR 256
random-exponential random—-gamma random-normal random-poisson..................... 257
71010 10) 0 G101] e [0 Y= L (R 257
[F= 1010 [0 00Tl) (oT0 A= 1010 [0) 00 Funl 0174010 NP 258
7110 10 1 oY =1 =) 0 N TR 258
7= 10 [0 00l (ot 0 A = 110 (0] 10 kYA 10| 259
(Y2 10 0 01 =Y] 10 PSP 259
ST 0 [0 oL TR 259
ST 0= 1110 [/TR 260
=100 10)V RPN 261
AT A= o [0 0] [ToF= 1= Y 261
S 000NV 1) 1 TR 261
remove—-<breed>—from ___remove—<breed>-to __remove—-<breed>-with.............. 261

5] 0= | PPN 262
1 01Tl 1 (=) 0 PP 262
121010) PP 263
TST=) 0T 151 01103 1LY/ =01 0 263
(ST b 110101 AP 263
[N T = RPN 263
00 | o PP PR 263
0 T TR 264
0 T 111 TR 264
T] A PP 264
10U 1o TR 264
0 TP 265
0L =Y) || TR 265
S e e e e e e e et et ee e et eeeea e eetetreeeea e rrareearaaas 265
LYoz | [t 10 [0 265
LT 1 T 266
R C-1=10 0 1T010] (0] o) RO 266
LY 10T 10T =TT 266
LT PR 267
SEI=CUIMENI=AITECIONY. ...t 267
SEI=CUIMENI=PIOL ... 268
SEI=CUIMENI=PIOt—PEN ... 268
set=default=Shape................ o ———————— 268

NetLogo 3.1.1 User Manual

Table of Contents

Primitives Dictionary

set=histogram—nNUM=DarS................ oot ————— 269
Yot 1] T 160 1SS T YR 269
SEI=PIOt—PEN=COIOL. ... —————— 269
SEt=PIOt=—PEN—INLEIVAL. ... —————— 269
SEt=PIOt=—PEN—MOE.cce e ———————— 269
set=plot=X—range Set—pPIOt=Y—TANGE...........cceetttttetet ettt 270
FT=1 00 AU URT PR 270
Lo 20 [7 270
SN ... —————————— 271
SNAPES. ... —————————— 271
Fo 00 271
Lo 0 (11 =) A 271
Lo o 10 272
LS 1 N 272
LT 74 < N 272
FST) o AR 272
SO Y. e ———————————— 273
SProut SProut=—<bBreedS>..........ccooiiiiiii i ————— 273
FT0 1 PSR UURR PP 274
o 7= 1.1 0P 274
oY= 1] 0 =) 1= L1 = 274
[YP= 1010 =110 @ [0YA = 1010 1 P 274
o = 1 (1 0 PP 274
F1 0] OSSP UR USRI 275
SUDJECE ... —————————— 275
SUDIISE SUBSTIING.cce oo 275
SUDIrACt=NEAadINgS.......cco oo ——————————— 275
LT 0 N 276
T 276
= TR 276
L 1= SRS PR 276
1= R 277
0 TR 277
0l 111 SRR 277
(011171 (0 Y 277
LOWAIASXY. e —————————————— 278
0 L 278
L0 L 278
U LT Rare | B 0] (TS0 Fo = 278
L LT S 10 1 279
U LTS A1 (ST 0] (Y10 e 1 <Y 279
U LT 0] A 0] (Y10 o 0] 1 N 280
tUItIES—0WN <BIrEEASS=OWN ...uuiiiiii ittt e e et e et e e e et e e s e e e e s e et eeeeraaas 280
DD ittt —— e — et et e et a e et e e et e aaaaaaaaaaaaaas 281
T 281
00T RPN 281

[0 o] 21 S SRR URT PR 281

Xiv

NetLogo 3.1.1 User Manual

Table of Contents

Primitives Dictionary

8 o) a1 PP 282

U= 0 [1=T03 (0]/ PP 282

U ST s 111 282

(ST o 15 1[5 TR 282
U= 11101 L PP 283

U Y=Y s £ 15T Y= 10 [R 283

[T s)1 1 TR 283
[ESTE] oYL 2o Tt O e 116 12/ PRSP 283

L 2 284
Nz 110110 1.1 T 284

Nz 110 S 0 1 284

V2= 1A= o1 284

L 284
VT Z= | TR 284
1TV 1 (o] o WA 285

(VLT (o] 8 e 11 285

VYL T 285
1T o TR 285
11 TR 286

a0 (Y=L 0 111 286
L1 e 1172)T 286

L0 1111 287
WIthOUE=INEITUPLION.ceeiiiiiicceeee e 287
L1100 TR 287
world—width world—height............ccccoviiiii 288
WEADTCOIONciiiiiiiieiieee e 288
L1 288
S 289
Lo 0) N 289

D R 289
2T 289
Y70 U 289

2 e e e ee e e eeeeeeereeseeaeeeeeetaeeaeetaaeeteetaeeeeteetteeteeteeetetreeteteerrrreearaaas 289
TR 289

XV

NetLogo 3.1.1 User Manual

XVi

What is NetLogo?

NetLogo is a programmable modeling environment for simulating natural and social phenomena. It
is particularly well suited for modeling complex systems developing over time. Modelers can give
instructions to hundreds or thousands of independent "agents" all operating concurrently. This
makes it possible to explore the connection between the micro-level behavior of individuals and the
macro-level patterns that emerge from the interaction of many individuals.

NetLogo lets students open simulations and "play" with them, exploring their behavior under
various conditions. It is also an authoring environment which enables students, teachers and
curriculum developers to create their own models. NetLogo is simple enough that students and
teachers can easily run simulations or even build their own. And, it is advanced enough to serve as
a powerful tool for researchers in many fields.

NetLogo has extensive documentation and tutorials. It also comes with a Models Library, which is a
large collection of pre—written simulations that can be used and modified. These simulations
address many content areas in the natural and social sciences, including biology and medicine,
physics and chemistry, mathematics and computer science, and economics and social psychology.
Several model-based inquiry curricula using NetLogo are currently under development.

NetLogo can also power a classroom participatory—simulation tool called HubNet. Through the use
of networked computers or handheld devices such as Texas Instruments (T1-83+) calculators, each
student can control an agent in a simulation. Follow_this link for more information.

NetLogo is the next generation of the series of multi—agent modeling languages that started with
StarLogo. It builds off the functionality of our product_StarLogoT and adds significant new features
and a redesigned language and user interface. NetLogo is written in Java so it can run on all major
platforms (Mac, Windows, Linux, et al). It is run as a standalone application. Individual models can
be run as Java applets inside a web browser.

Features

You can use the list below to help familiarize yourself with the features NetLogo has to offer.

e System:
¢ Cross—platform: runs on Mac, Windows, Linux, et al
* Language:
¢ Fully programmable
Simple language structure
Language is Logo dialect extended to support agents and concurrency
Mobile agents (turtles) move over a grid of stationary agents (patches)
Create links between turtles to make networks
Unlimited numbers of agents and variables
Large vocabulary of built-in language primitives
Integer and double precision floating point math
¢ Runs are exactly reproducible cross—platform
* Environment:
¢ View your model in either 2D and 3D
¢ Scalable and rotatable vector shapes

* & & & 6 o o

What is NetLogo? 1

NetLogo 3.1.1 User Manual

Turtle and patch labels

Interface builder w/ buttons, sliders, switches, choosers, monitors, text boxes
"Control strip" including speed slider

Powerful and flexible plotting system

Info tab for annotating your model

HubNet: participatory simulations using networked devices

Agent monitors for inspecting and controlling agents

Export and import functions (export data, save and restore state of model)
BehaviorSpace tool used to collect data from multiple runs of a model
System Dynamics Modeler

@ S & ¢ 6 O O O 0

» Web:
¢ Models can be saved as applets to be embedded in web pages (note: some features
are not available from applets, such as some extensions and the 3D view)

What is NetLogo?

Copyright Information

Copyright 1999 by Uri Wilensky. All rights reserved.

The NetLogo software, models and documentation are distributed free of charge for use by the
public to explore and construct models. Permission to copy or modify the NetLogo software, models
and documentation for educational and research purposes only and without fee is hereby granted,
provided that this copyright notice and the original author's name appears on all copies and
supporting documentation. For any other uses of this software, in original or modified form, including
but not limited to distribution in whole or in part, specific prior permission must be obtained from Uri
Wilensky. The software, models and documentation shall not be used, rewritten, or adapted as the
basis of a commercial software or hardware product without first obtaining appropriate licenses from
Uri Wilensky. We make no representations about the suitability of this software for any purpose. It is
provided "as is" without express or implied warranty.

To reference this software in academic publications, please use: Wilensky, U. (1999). NetLogo.
http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer—-Based
Modeling, Northwestern University, Evanston, IL.

The project gratefully acknowledges the support of the National Science Foundation (REPP and
ROLE Programs) —— grant numbers REC #9814682 and REC #0126227.

Third party licenses

For random number generation, NetLogo uses the MersenneTwisterFast class by Sean Luke. The
copyright for that code is as follows:

Copyright (c) 2003 by Sean Luke.
Portions copyright (c) 1993 by Michael Lecuyer.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

« Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

 Neither the name of the copyright owners, their employers, nor the names of its contributors
may be used to endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

Copyright Information 3

http://ccl.northwestern.edu/netlogo/

NetLogo 3.1.1 User Manual

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Parts of NetLogo (specifically, the random—gamma primitive) are based on code from the Colt
library (http://hoschek.home.cern.ch/hoschek/colt/). The copyright for that code is as follows:

Copyright 1999 CERN - European Organization for Nuclear Research. Permission to use, copy,
modify, distribute and sell this software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in all copies and that both that
copyright notice and this permission notice appear in supporting documentation. CERN makes no
representations about the suitability of this software for any purpose. It is provided "as is" without
expressed or implied warranty.

NetLogo uses the MRJ Adapter library, which is Copyright (c) 2003 Steve Roy
<sroy@roydesign.net>. The library is covered by the GNU LGPL (Lesser General Public License).
The text of that license is included in the "docs" folder which accompanies the NetLogo download,

and is also available from_http://www.gnu.org/copyleft/lesser.html.

NetLogo uses the Quaqua Look and Feel library, which is Copyright (¢) 2003—2005 Werner
Randelshofer,_http://www.randelshofer.ch/, werner.randelshofer@bluewin.ch, All Rights Reserved.
The library is covered by the GNU LGPL (Lesser General Public License). The text of that license is
included in the "docs" folder which accompanies the NetLogo download, and is also available from

http://www.gnu.org/copyleft/lesser.html .

For the system dynamics modeler, NetLogo uses the JHotDraw library, which is Copyright (c) 1996,
1997 by IFA Informatik and Erich Gamma. The library is covered by the GNU LGPL (Lesser
General Public License). The text of that license is included in the "docs" folder which accompanies
the NetLogo download, and is also available from_http://www.gnu.org/copyleft/lesser.html .

For movie—-making, NetLogo uses code adapted from sim.util. media.MovieEncoder.java by Sean
Luke, distributed under the MASON Open Source License. The copyright for that code is as follows:

This software is Copyright 2003 by Sean Luke. Portions Copyright 2003 by Gabriel Catalin Balan,
Liviu Panait, Sean Paus, and Dan Kuebrich. All Rights Reserved.

Developed in Conjunction with the George Mason University Center for Social Complexity

By using the source code, binary code files, or related data included in this distribution, you agree to
the following terms of usage for this software distribution. All but a few source code files in this
distribution fall under this license; the exceptions contain open source licenses embedded in the
source code files themselves. In this license the Authors means the Copyright Holders listed above,
and the license itself is Copyright 2003 by Sean Luke.

The Authors hereby grant you a world—wide, royalty—free, non—exclusive license, subject to third
party intellectual property claims:

to use, reproduce, modify, display, perform, sublicense and distribute all or any portion of the source
code or binary form of this software or related data with or without modifications, or as part of a

4 Copyright Information

http://hoschek.home.cern.ch/hoschek/colt/
http://www.gnu.org/copyleft/lesser.html
http://www.randelshofer.ch/
http://www.gnu.org/copyleft/lesser.html
http://www.gnu.org/copyleft/lesser.html

NetLogo 3.1.1 User Manual

larger work; and under patents now or hereafter owned or controlled by the Authors, to make, have

made, use and sell ("Utilize") all or any portion of the source code or binary form of this software or

related data, but solely to the extent that any such patent is reasonably necessary to enable you to

Utilize all or any portion of the source code or binary form of this software or related data, and not to
any greater extent that may be necessary to Utilize further modifications or combinations.

In return you agree to the following conditions:

If you redistribute all or any portion of the source code of this software or related data, it must retain
the above copyright notice and this license and disclaimer. If you redistribute all or any portion of
this code in binary form, you must include the above copyright notice and this license and disclaimer
in the documentation and/or other materials provided with the distribution, and must indicate the use
of this software in a prominent, publically accessible location of the larger work. You must not use
the Authors's names to endorse or promote products derived from this software without the specific
prior written permission of the Authors.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS, NOR THEIR EMPLOYERS, NOR GEORGE MASON
UNIVERSITY, BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

For movie—-making, NetLogo uses code adapted from JpegimagesToMovie.java by Sun
Microsystems. The copyright for that code is as follows:

Copyright (c) 1999-2001 Sun Microsystems, Inc. All Rights Reserved.

Sun grants you ("Licensee") a hon—exclusive, royalty free, license to use, modify and redistribute
this software in source and binary code form, provided that i) this copyright notice and license
appear on all copies of the software; and ii) Licensee does not utilize the software in a manner
which is disparaging to Sun.

This software is provided "AS 1S," without a warranty of any kind. ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE
LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

This software is not designed or intended for use in on-line control of aircraft, air traffic, aircraft
navigation or aircraft communications; or in the design, construction, operation or maintenance of
any nuclear facility. Licensee represents and warrants that it will not use or redistribute the Software
for such purposes.

Copyright Information 5

NetLogo 3.1.1 User Manual

For graphics rendering, NetLogo uses JOGL, a Java API for OpenGL. For more information about
JOGL, see_http://jogl.dev.java.net/. The library is distributed under the BSD license:

Copyright (c) 2003 Sun Microsystems, Inc. All Rights Reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

« Redistribution of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

« Redistribution in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

Neither the name of Sun Microsystems, Inc. or the names of contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

This software is provided "AS 1S," without a warranty of any kind. ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN MICROSYSTEMS, INC. ("SUN") AND
ITS LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A
RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.
IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT
OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR
PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF
LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE THIS SOFTWARE, EVEN IF
SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You acknowledge that this software is not designed, licensed or intended for use in the design,
construction, operation or maintenance of any nuclear facility.

Sun gratefully acknowledges that this software was originally authored and developed by Kenneth
Bradley Russell and Christopher John Kline.

6 Copyright Information

http://jogl.dev.java.net/

What's New?

Feedback from users is very valuable to us in designing and improving NetLogo. We'd like to hear
from you. Please send comments, suggestions, and questions to_feedback@ccl.northwestern.edu,

and bug reports to_bugs@ccl.northwestern.edu.
Version 3.1.1 (June 16, 2006)

* content:
¢ corrections to User Manual
¢ new biology models: Daisyworld, Wolf Sheep Stride Inheritance
¢ improved models: Ethnocentrism (clearer code, corrected reference), Bug Hunt
Camouflage (upgraded, now verified), Fire (improved info tab), GasLab Two Gas
(bug fix), Heatbugs (now verified), GasLab Single Collision (bug fix), Disease Solo
(improved interface), Echo (improved)
¢+ new Code Example: Line of Sight Example
« engine fixes:
¢ many extensions can now be used in saved applets (however, extensions that
require additional external jars still don't work)
¢ fixed bug in in—-radius where a large radius in a non—-wrapping world could give
incorrect results
+ fixed bug where calling movie—close when no movie was open could cause
NetLogo to hang
¢ fixed some error messages to more accurately report the location of the error
* interface fixes:
¢ when opening models from old NetLogo versions, user—choice is now
auto—translated to user—one—of
¢ in the 3D view, patch and turtle labels are now positioned correctly even if the origin
is off-center
¢ link direction indicators now show up in the 3D view and in HubNet view mirroring
+ fixed bug where the Procedures tab could lose the keyboard focus when the compiler
finds an error
+ fixed bug where using the black arrows in the control strip to resize the world could
cause incorrect a world size to appear in the strip
+ fixed bug in BehaviorSpace where failure to create an output file caused an
uninformative error message

Version 3.1 (April 14, 2006)

* system:
¢ the 3D view now works on Intel-based Macs
¢ for Windows users, our bundled Java version is now 1.5 (was 1.4)
¢ for Mac users, Java 1.5 is now used if it is available
* models:
¢ new earth science model: Grand Canyon
¢ new EvolLab evolution model: Sunflower Biomorphs
¢ new social science model: Ethnocentrism
¢+ new mathematics model: Voronoi
¢ new physics model: DLA Simple

What's New? 7

mailto:feedback@ccl.northwestern.edu
mailto:bugs@ccl.northwestern.edu

NetLogo 3.1.1 User Manual

¢ new computer science models: Perceptron, Artificial Neural Network
¢ new biology/system dynamics models: Tabonuco Yagrumo, Tabonuco Yagrumo
Hybrid
¢ new code examples: Moore & Von Neumann Example, Intersecting Lines Example,
Diffuse Off Edges Example, Tie System Example
improved ProbLab model: Dice Stalagmite
improved social science models: Traffic Grid, Scatter
improved chemistry/physics model: GasLab Circular Particles (runs faster)
improved networks models (using experimental link primitives): Giant Component,
Preferential Attachment, Small Worlds
« features:
¢ randomized agent ordering: every agentset is now always in random order (a
different random order each time you use it)
+ world topologies:
¢ the world isn't always a torus anymore; by turning vertical and horizontal
wrapping on or off, you can choose between a torus, a rectangle, or a vertical
or horizontal cylinder
¢ using primitives ending in —nowrap is no longer necessary; just turn off world
wrapping instead
O new can—move? reporter lets turtles sense the world edges
O screen—edge—x and screen—edge-y have been renamed to max—pxcor
and max—pycor (and new min—pxcor and min—pycor primitives have
been added)
O screen-size—x and screen-size-y have been renamed to
world-width and world—height
¢ see the Topology section of the Programming Guide for more information
¢ new, experimental suite of link primitives, useful for network models and others; see
Links sections of Programming Guide and Primitives Dictionary
¢ model authors can now specify the singular form of a breed name:
0 the new syntax for declaring each breed is e.g. breed [wolves wolf]
¢ you can ask for a breeded turtle by who number, e.g. wolf 0
¢ in model output, breeded turtles also appear as e.g. wolf 0
¢ added new reporter e.g. is—wolf?
O this form also appears elsewhere in the user interface, e.g. when picking a
turtle from the view, in turtle monitors, and so on
¢ new command stamp-erase
¢ new _ tie and __untie primitives allow turtles to connect their movement to
another turtle. See the_Tie Section of the Programming Guide for details.
« other language changes:
¢ the sort and sort-by primitives can now be used to convert an agentset to a
sorted list of agents; if you use sort, turtles are sorted by who number, and patches
are sorted left-to-right, top—to—bottom
¢ new reporters random-xcor, random-ycor, random-pxcor, and random-pycor
are handy for generating random coordinates
¢+ member? can now be used to check whether an agent is a member of an agentset
(worked in 3.0, but was undocumented)
¢ random-one-of and random—n-of have been renamed to just one—of and n—of
removed no-label from the language; use the empty string instead
¢ renamed user—choice to user—one-of, user—choose—file to user—file,
user—choose—-new-file to user-new-file, user-choose-directory to
user—directory

> & & o

<

What's New?

NetLogo 3.1.1 User Manual

« interface changes:
¢ minor improvements to look & feel, e.g. vertical buttons in toolbars instead of
horizontal ones
¢ the info tabs of saved applets are now more attractive, as in the application
¢ user—one-of (formerly user—choice) now always shows the choices as a menu,
never buttons
« engine fixes:
+ fixed 3.0—only bug where the repeat and let commands didn't always work
correctly when used from the Command Center
¢ in the System Dynamics Modeler, system—dynamics—-t is now incremented at the end
of each step, not the beginning
* interface fixes:
¢ double clicking outside a bracket or parenthesis in the editor now selects all of the
text between the matching brackets or parentheses
¢ when shapes are off, shapes consisting of a single line now still draw as lines, not
squares
+ fixed some incorrectly worded compiler error messages involving primitives that can
take a variable number of inputs, such as list and sentence
+ fixed Windows-only bug where the Procedures menu had trouble showing very large
number of procedure names
¢ fixed Mac-only bug where pasting text from another application could cause a
compiler error
» BehaviorSpace changes:
¢ you can now use the stop command in an experiment's go commands, or in the
procedure called by your experiment's go commands, to stop a model run, the same
way it works to stop a forever button
¢ you can now choose to save no results at all
¢ the Abort button is now more often able to halt a stuck model
¢ the Procedures tab is now always recompiled before an experiment begins
* HubNet changes:
¢ new activities: Bug Hunters Camouflage, Walking, Disease Doctors, Function, Guppy
Spots
¢ improved activities: Predator Prey Game (formerly Herbivore Carnivore), Root Beer
Game (formerly Beer Game)
« AP| changes:
¢ documentation now recommends using the server VM for best performance

Version 3.0 (September 2005)

3D view (for 2D models)

» System Dynamics Modeler

« follow, ride and watch commands for tracking particular agents
 drawing layer for marks left by turtles

« buttons take turns now (instead of interleaving their code with each other)
* more muted, harmonious color palette

* more attractive Information tab

» GoGo extension for interfacing NetLogo with physical devices
 Color Swatches dialog helps you choose colors

« substantial improvements to BehaviorSpace

e commands for importing image files

What's New? 9

NetLogo 3.1.1 User Manual

« turtles can have cones of vision
» expanded controlling API

Version 2.1 (December 2004)

« much larger and higher quality library of turtle shapes
runs models "headless"”, with no GUI, from the command line
editor now highlights matching parentheses and brackets
"action keys" let buttons be triggered by keypresses
makes QuickTime movies of models
redesigned Command Center for greater usability
« optional "output area" in models
« greatly improved shapes editor
« easy capture of images from Interface tab
» multilevel "Undo" in editor
* new let command for easy creation of local variables
» new carefully command for trapping runtime errors
e computer HubNet:
¢ substantially improved reliability
¢ "server discovery" is now fully supported
¢ you may serve multiple activities simultaneously from the same computer
¢ improved client interface and Control Center

Version 2.0.2 (August 2004)

* new, experimental "extensions" API lets users write new commands and reporters in Java

* NetLogo can now make sounds and music; this is done with a new, experimental sound
extension that is also an example of how to use the extensions API

« new "controlling" API lets users control NetLogo from external Java code (such as for
automating multiple runs)

Version 2.0 (December 2003)

« full support for Mac OS X; improved Linux support
e minimum Java version is now 1.4.1; Windows 95, MacOS 8, MacOS 9 no longer supported
« increased overall reliability
 improved look and feel throughout the application
« faster and more flexible graphics (labels, turtle sizes, exact turtle positions all now fast,
reliable, and flicker—free)
« suite of primitives for reading and writing external files
« "strict math" mode now always on, for reproducible results
 export graphics window or interface tab as image file
» revamped BehaviorSpace (various improvements made; some old features are missing)
« Mersenne Twister random number generator
e many new primitives
e computer HubNet:
¢ improved reliability; no longer alpha or beta
¢ improved graphics window mirroring features and performance

10 What's New?

NetLogo 3.1.1 User Manual
Version 1.3 (June 2003)

« graphics window control strip

* choosers

« strict math mode so results are identical on all platforms (requires Java 1.3 or higher)
* new primitives including run/runresult and map/foreachffilter/reduce

* some primitives now accept a variable number of inputs

Version 1.2 (March 2003)

« alpha release of computer HubNet: formerly HubNet required the TI Navigator calculator
network to operate; now you can use it over TCP/IP with networks of laptop or desktop
computers

* new primitives and other language improvements

« display of coordinates when mousing over plots

Version 1.1 (July 2002)

 "Save as Applet" lets you embed your model in any web page
* printer support

* Procedures menu

« scrollable Interface tab

« contextual menus in Interface tab

* new primitives

Version 1.0 (April 2002)

« initial release (after a series of betas)

What's New?

11

12

NetLogo 3.1.1 User Manual

What's New?

System Requirements

NetLogo is designed to run on almost any type of computer, but some older or less powerful
systems are not supported. The exact requirements are summarized below. If you have any trouble
with NetLogo not working on your system, we would like to offer assistance. Please write

bugs@ccl.northwestern.edu.

System Requirements: Application

On all systems, approximately 25MB of free hard drive space is required.

Windows

» Windows NT, 98, ME, 2000, or XP
* 64 MB RAM (or probably more for NT/2000/XP)

You can choose to include a suitable Java Virtual Machine when downloading NetLogo. If you want
to use a JVM that you install separately yourself, it must be version 1.4.1 or later. 1.5.0_05 or later
is preferred.

Windows 95 is no longer supported by the current version of NetLogo. Windows 95 users should
use NetLogo 1.3.1 instead. We will continue to support NetLogo 1.3.1.

Mac OS X

« OS X version 10.2.6 or later (10.3 or later is recommended)
« 128 MB RAM (256 MB RAM strongly recommended)

On OS X, the Java Virtual Machine is supplied by Apple as part of the operating system. OS X 10.3
includes an appropriate JVM. OS X 10.2 users must install Java 1.4.1 Update 1, which is available
from Apple through Software Update.

For OS X 10.3 users, installing Java 1.4.2 Update 1 is recommended, for improved application
reliability. The update is available from Apple through Software Update.

Mac OS 8 and 9

These operating systems are no longer supported by the current version of NetLogo. MacOS 8 and
9 users should download NetLogo 1.3.1 instead. We will continue to support NetLogo 1.3.1.

Other platforms
NetLogo should work on any platform on which a Java Virtual Machine, version 1.4.1 or later, is

available and installed. Version 1.5.0_05 or later is preferred. If you have trouble, please contact us
(see above).

System Requirements 13

mailto:bugs@ccl.northwestern.edu

NetLogo 3.1.1 User Manual
System Requirements: Saved Applets

NetLogo models saved as Java applets should work on any web browser and platform on which a
Java Virtual Machine, version 1.4.1 or later, is available. If you have trouble, please contact us (see
above).

On Mac OS X, the Internet Explorer browser does not make use of the 1.4.1 JVM, so it cannot run
saved applets. We suggest using Apple's Safari browser instead, or another web browser which
uses the newer JVM.

Note that the 3D view is not available in applets.

System Requirements: 3D View

NetLogo's 3D view is a new feature, and hasn't been tested on every configuration. Below is
information about configurations that we have tested so far.

Operating Systems
We've tested the 3D view on:

* Linux 2.6.8 (Debian i386)

e Linux 2.6.8 (Debian amd64)

* Mac OS X 10.3.9, 10.4.3
note: Java 1.4.2 is required

» Windows 2000

» Windows XP

If you use the 3D view on an operating system that we haven't tested, we'd like to hear about it.
Please let us know at_feedback@ccl.northwestern.edu. Please include the information in the
System section of About NetLogo.

Graphics Cards
We've tested the 3D view on many different graphics cards and controllers, including:

* ATI Radeon 7500

* ATI Radeon 9200

* ATI Radeon 9600

* ATI Radeon 9800 XT

* ATI Radeon IGP 345

« ATI Radeon Mobility

* ATI FireGL V3100

Intel 82830M

nVidia GeForce MX
nVidia GeForce FX 5200
nVidia GeForce FX Go5650
nVidia Quadro NVS

14 System Requirements

mailto:feedback@ccl.northwestern.edu

NetLogo 3.1.1 User Manual

If you use the 3D view with a graphics card that we haven't tested, we'd like to hear about it. Please
let us know at_feedback@ccl.northwestern.edu. Please include the information in the System
section of About NetLogo.

Fullscreen mode

Fullscreen mode does not work with some graphics cards and controllers, including the ATI Radeon
IGP 345 and the Intel 82845.

Some users with older computers, especially laptops, have reported that entering fullscreen mode
caused NetLogo to crash. If you experience this problem, please let us know.

Library Conflicts
NetLogo includes JOGL version 1.1.0 for the 3D View.

On Mac OS X and Windows, NetLogo uses the version of JOGL that comes with NetLogo, even if
you have a different version of JOGL on your computer. If for some reason NetLogo is unable to
find and use the correct version, it will warn you. If you get such a warning, you may need to remove
your separate JOGL installation in order for NetLogo's 3D View to work.

On a Linux machine, if NetLogo is finding the wrong version of JOGL, trying running with the
—Djava.ext.dirs= command line option, like this:

java —Djava.ext.dirs= —jar NetLogo.jar

That should fix the problem. If it doesn't, try removing your JOGL installation.

Removing an old JOGL

If NetLogo tells you you need to remove your JOGL installation, here's how to do it. You need to
remove the jogl.jar file and one or two native library files:

* Remove jogl.jar from lib/ext in your Java home directory.

* On Mac OS X, remove liblogl.jnilib from /Library/Java/Extensions or
~/Library/Java/Extensions.

* On Windows, remove jogl.dll and jogl_cg.dll from jre/bin in your Java home.

« On Linux, remove libjogl.so from your always—checked Java native libraries directory.

System Requirements 15

mailto:feedback@ccl.northwestern.edu

16

NetLogo 3.1.1 User Manual

System Requirements

Known Issues

If NetLogo malfunctions, please send us a bug report. See the_"Contact Us" section for instructions.

Known bugs (all systems)

« Integers in NetLogo must lie in the range —2147483648 to 2147483647; if you exceed this
range, instead of a runtime error occurring, you get incorrect results

» Qut-of-memory conditions are not handled gracefully

» The stop and report commands do not work properly if used inside
without=interruption (we are already working on fixing this)

» The uphill and downhill reporters sometimes return incorrect answers for turtles which
are standing on patch boundaries; we are already working on fixing this, but in the meantime
you may wish to use uphill4 and downhill4 instead

« If you use "Export World" to suspend a model run and then resume it later with "Import
World", this may change the outcome of the model run if your model involves turtles dying
and new turtles being born, because the export/import may change what who numbers get
assigned to new turtles (we are already working on fixing this)

 "Export World" does not include the contents of plots (we are already working on fixing this)

» Extensions that require additional external jars don't work from models saved as applets (we
are already working on fixing this)

» The 3D View doesn't work on_some graphics configurations; on others the 3D View works
but 3D full screen mode doesn't

* A bug in Java causes patch colors imported using import—pcolors to be brighter than the
original if the original image has a grayscale palette. To work around this issue, convert the
image file to an RGB palette.

Windows—-only bugs

» The "User Manual" item on the Help menu does not work on every machine (Windows 98
and ME are most likely to be affected, newer Windows versions less so)

« Drawing and then erasing a line in the drawing may not erase every pixel exactly.

« On some laptops, the Procedures and Info tabs may become garbled when you scroll them.
To avoid this bug, reduce the size of the NetLogo window and/or reduce the color depth of
your monitor (e.g. change from 32-bit to 16— or 8-bit color). This is a bug in Java itself, not
in NetLogo per se. For technical details on the bug, see

http://developer.java.sun.com/developer/bugParade/bugs/4763448.html (free registration
required). NetLogo users are encouraged to visit that site and vote for Sun to fix this bug.

Macintosh—only bugs

* On Mac OS X 10.4 only, the "Copy View" and "Copy Interface" items may not work: the
resulting image is distorted. The workaround is to use the "Export View" and "Export
Interface” items instead.

* When opening a model from the Finder (by double—clicking on it, or dragging it onto the
NetLogo icon), if NetLogo is not already running, then the model may or may not open; the
bug is intermittent. (If NetLogo is already running, the model always opens.)

* On versions of Mac OS X prior to 10.4, it is possible for NetLogo's menus to get confused so

Known Issues 17

http://developer.java.sun.com/developer/bugParade/bugs/4763448.html

NetLogo 3.1.1 User Manual

that the "Quit" item does not work. If this happens, you can quit NetLogo by pressing the red
close button on the left end of the NetLogo's title bar.

* On Mac OS X 10.2 only, the "User Manual" item on the Help menu will sometimes launch a
web browser other than your default browser

* On Mac OS X 10.2 only, opening the Models Library can trigger an error if you have
malformed fonts installed. If this happens you should determine which fonts in
/System/Library/Fonts and other font directories are causing the problem and remove them.

Linux/UNIX-only bugs

» User Manual always opens in Mozilla, not your default browser. One possible workaround is
to bookmark the file docs/index.html in your favorite browser. Another workaround is to
make a symlink that's called "mozilla" (that's the command name NetLogo tries to run), but
actually runs a different browser.

« We have discovered a problem on Linux where the "exp" reporter sometimes returns a
slightly different answer (differing only in the last decimal place) for the same input.
According to an engineer at Sun, this should only happen on Linux kernel versions 2.4.19
and earlier, but we have observed the problem on more recent kernel versions. We assume
the problem is Linux—specific and does not happen on other Unix—based systems. We are
not sure if the problem ever occurs in practice during actual NetLogo model runs, or only
occurs in the context of our testing regimen. The bug in the Sun's Java VM, and not in
NetLogo itself. We hope that only the "exp" reporter is affected, but we can't be entirely
certain of this. NetLogo users are encouraged to visit
http://developer.java.sun.com/developer/bugParade/bugs/5023712.html (free registration
required) and vote for Sun to fix this bug.

« If NetLogo cannot find the font Lucida, menus will be illegible. This has been known to
happen on Fedora Core 3, after upgrading packages. Restarting the X Font Server (xfs) has
resolved the problem in all reported cases.

* Sun's 1.5.0 Java runtime has display problems with GTK 2.0 and NetLogo. Issues may
include windows not updating properly, interface elements being strangely sized, menus
being cut-off at the bottom, and weird characters appearing on the view. To avoid these
issues, you can use Sun's j2sdk1.4.2_10. Also, the JDK6 beta release from Sun does quite
well.

Known issues with computer HubNet

See the_HubNet Guide for a list of known issues with computer HubNet.

Unimplemented StarLogoT primitives

The following StarLogoT primitives are not available in NetLogo. (Note that many StarLogoT
primitives, such as count-turtles—with, are intentionally not included in this list because
NetLogo allows for the same functionality with the new agentset syntax.)

* maxint, minint, maxnum, minnum

* import-turtles, import—patches, import-turtles—and—patches (note that
NetLogo adds import—world, though)

« bit, bitand, bitneg, bitor, bitset, bitstring, bitxor, make-bitarray,
rotate—left, rotate—right, shift-left, shift-right

18 Known Issues

http://developer.java.sun.com/developer/bugParade/bugs/5023712.html

NetLogo 3.1.1 User Manual

« camera-brightness, camera—click, camera-init, camera—set-brightness
« netlogo—directory, project—directory, project—-name, project—pathname,
save—project

Known Issues

19

20

NetLogo 3.1.1 User Manual

Known Issues

Contacting Us

Feedback from users is very valuable to us in designing and improving NetLogo. We'd like to hear
from you.

Web Site

Our web site at_ccl.northwestern.edu includes our mailing address and phone number. It also has
information about our staff and our various research activities.

Feedback, Questions, Etc.

If you have general feedback, suggestions, or questions, write to_feedback@ccl.northwestern.edu.

If you need help with your model, you should also consider posting to the NetLogo users group at
http://groups.yahoo.com/group/netlogo-users/.

Reporting Bugs

If you would like to report a bug that you find in NetLogo, write to_bugs@ccl.northwestern.edu.
When submitting a bug report, please try to include as much of the following information as
possible:

» A complete description of the problem and how it occurred.

» The NetLogo model or code you are having trouble with. If possible, attach a complete
model.

« Your system information: NetLogo version, OS version, Java version, and so on. This
information is available from NetLogo's "About NetLogo" menu item. In saved applets, the
same information is available by control-clicking (Mac) or right—clicking the white
background of the applet.

« Any error messages that were displayed.

Contacting Us

21

http://ccl.northwestern.edu/
mailto:feedback@ccl.northwestern.edu
http://groups.yahoo.com/group/netlogo-users/
mailto:bugs@ccl.northwestern.edu

22

NetLogo 3.1.1 User Manual

Contacting Us

Sample Model: Party

This activity is designed to get you thinking about computer modeling and how you can use it. It also
gives you some insight into the NetLogo software. We encourage beginning users to start with this
activity.

At a Party

Have you ever been at a party and noticed how people cluster in groups? You may have also
noticed that people do not stay within one group, but move throughout the party. As individuals
move around the party, the groups change. If you watched these changes over time, you would
notice patterns forming.

For example, in social settings, people tend to exhibit different behavior than when they are at work
or home. Individuals who are confident within their work environment may become shy and timid at
a social gathering. And others who are quiet and reserved at work may be the "party starter" with
friends.

The patterns may also depend on what kind of gathering it is. In some settings, people are trained
to organize themselves into mixed groups; for example, party games or school-like activities. But in
a non-structured atmosphere, people tend to group in a more random manner.

Is there any type of pattern to this kind of grouping?

Let's take a closer look at this question by using the computer to model human behavior at a party.
NetLogo's "Party" model looks specifically at the question of grouping by gender at parties: why do

groups tend to form that are mostly men, or mostly women?

Let's use NetLogo to explore this question.

What to do:

1. Start NetLogo.
2. Choose "Models Library" from the File menu.

NetLogo Bl Edit Tools Zoon

) | New ®N
4 Open... #¥0 |
Models Library M
t Delet
o B __? Save S _[
Save As...

Save As Applet...
Print... 3P

3. Open the "Social Science" folder.
4. Click on the model called "Party".

Sample Model: Party 23

NetLogo 3.1.1 User Manual

5. Press the "open" button.

6. Wait for the model to finish loading

7. (optional) Make the NetLogo window bigger so you can see everything.
8. Press the "setup" button.

In the view, you will see pink and blue lines with numbers:

10 15 13 12 18 14 15 18 17

These lines represent mingling groups at a party. Men are represented in blue, women in pink. The
numbers are the total number of people in each group.

Do all the groups have about the same number of people?
Do all the groups have about the same number of each sex?

Let's say you are having a party and invited 150 people. You are wondering how people will gather
together. Suppose 10 groups form at the party.

How do you think they will group?

Instead of asking 150 of your closest friends to gather and randomly group, let's have the computer
simulate this situation for us.

What to do:

1. Press the "go" button. (Pressing "go" again will stop the model manually.)
2. Observe the movement of people until the model stops.
3. Watch the plots to see what's happening in another way.

Now how many people are in each group?

Originally, you may have thought 150 people splitting into 10 groups, would result in about 15
people in each group. From the model, we see that people did not divide up evenly into the 10
groups —- instead, some groups became very small, whereas other groups became very large.
Also, the party changed over time from all mixed groups of men and women to all single—sex
groups.

What could explain this?

24 Sample Model: Party

NetLogo 3.1.1 User Manual

There are lots of possible answers to this question about what happens at real parties. The designer
of this simulation thought that groups at parties don't just form randomly. The groups are determined
by how the individuals at the party behave. The designer chose to focus on a particular variable,
called "tolerance™:

tolerance 25.0%

Tolerance is defined here as the percentage of people of the opposite sex an individual is
"comfortable" with. If the individual is in a group that has a higher percentage of people of the
opposite sex than their tolerance allows, then they become "uncomfortable" and leave the group to
find another group.

For example, if the tolerance level is set at 25%, then males are only "comfortable" in groups that
are less than 25% female, and females are only "comfortable” in groups that are less than 25%
male.

As individuals become "uncomfortable” and leave groups, they move into new groups, which may
cause some people in that group to become "uncomfortable"” in turn. This chain reaction continues
until everyone at the party is "comfortable" in their group.

Note that in the model, "tolerance" is not fixed. You, the user, can use the tolerance "slider" to try
different tolerance percentages and see what the outcome is when you start the model over again.

How to start over:

1. If the "go" button is pressed (black), then the model is still running. Press the
button again to stop it.

2. Adjust the "tolerance" slider to a new value by dragging its red handle.

3. Press the "setup" button to reset the model.

4. Press the "go" button to start the model running again.

Challenge

As the host of the party, you would like to see both men and women mingling within the groups.
Adjust the tolerance slider on the side of the view to get all groups to be mixed as an end result.

To make sure all groups of 10 have both sexes, at what level should we set the tolerance?
Test your predictions on the model.

Can you see any other factors or variables that might affect the male to female ratio within each
group?

Make predictions and test your ideas within this model. Feel free to manipulate more than one
variable at a time.

As you are testing your hypotheses, you will notice that patterns are emerging from the data. For
example, if you keep the number of people at the party constant but gradually increase the

Sample Model: Party 25

NetLogo 3.1.1 User Manual

tolerance level, more mixed groups appear.
How high does the tolerance value have to be before you get mixed groups?

What percent tolerance tends to produce what percentage of mixing?

Thinking With Models

Using NetLogo to model situations like this party scenario allows you to experiment with a system in
a rapid and flexible way that would be difficult to do in a real world situation. Modeling also gives
you the opportunity to observe a situation or circumstance with less prejudice —— as you can
examine the underlying dynamics of a situation. You may find that as you model more and more,
many of your preconceived ideas about various phenomena will be challenged. For example, a
surprising result of the Party model is that even if tolerance is relatively high, a great deal of
separation between the sexes occurs.

This is a classic example of an "emergent" phenomenon, where a group pattern results from the
interaction of many individuals. This idea of "emergent" phenomena can be applied to almost any
subject.

What other emergent phenomena can you think of?

To see more examples and gain a deeper understanding of this concept and how NetLogo helps
learners explore it, you may wish to explore NetLogo's Models Library. It contains models that

demonstrate these ideas in systems of all kinds.

For a longer discussion of emergence and how NetLogo helps learners explore it, see_'Modeling
Nature's Emergent Patterns with Multi—agent Languages" (Wilensky, 2001).

What's Next?

The section of the User Manual called_Tutorial #1: Running Models goes into more detail about how
to use the other models in the Models Library.

If you want to learn how to explore the models at a deeper level,_Tutorial #2: Commands will
introduce you to the NetLogo modeling language.

Eventually, you'll be ready for_Tutorial #3: Procedures, where you can learn how to alter and extend
existing models to give them new behaviors, and build your own models.

26 Sample Model: Party

http://ccl.northwestern.edu/uri/public_html/papers/MEE/
http://ccl.northwestern.edu/uri/public_html/papers/MEE/

Tutorial #1: Models

If you read the_Sample Model: Party section, you got a brief introduction to what it's like to interact
with a NetLogo model. This section will go into more depth about the features that are available
while you're exploring the models in the Models Library.

Throughout all of the tutorials, we'll be asking you to make predictions about what the effects of
making changes to the models will be. Keep in mind that the effects are often surprising. We think
these surprises are exciting and provide excellent opportunities for learning.

Some people have found it helpful to print out the tutorials in order to work through them. When the

tutorials are printed out, there's more room on your computer screen for the NetLogo model you're
looking at.

Sample Model: Wolf Sheep Predation

We'll open one of the Sample Models and explore it in detail. Let's try a biology model: Wolf Sheep
Predation, a predator—prey population model.

* Open the Models Library from the File menu.

NetLogo Bl Edit Tools Zoon

) | New ®N
4 Open... #¥0 |
Models Library M
t Delet
Lﬂ | Save SGS_[
Save As...

Save As Applet...
Print... 3P

» Choose "Wolf Sheep Predation" from the Biology section and press "Open".

The Interface tab will fill up with lots of buttons, switches, sliders and monitors. These interface
elements allow you to interact with the model. Buttons are blue; they set up, start, and stop the
model. Sliders and switches are green; they alter model settings. Monitors and plots are beige; they
display data.

If you'd like to make the window larger so that everything is easier to see, you can use the zoom
menu at the top of the window.

When you first open the model, you will notice that the view is empty (all black). To begin the model,
you will first need to set it up.

Tutorial #1: Models 27

NetLogo 3.1.1 User Manual

* Press the "setup” button.
What do you see appear in the view?
* Press the "go" button to start the simulation.
As the model is running, what is happening to the wolf and sheep populations?

* Press the "go" button to stop the model.

Controlling the Model: Buttons

When a button is pressed, the model responds with an action. A button can be a "once" button, or a
"forever” button. You can tell the difference between these two types of buttons by a symbol on the
face of the button. Forever buttons have two arrows in the bottom right corners, like this:

]

g0 =~

Once buttons don't have the arrows, like this:

@
setup

Once buttons do one action and then stop. When the action is finished, the button pops back up.

Forever buttons do an action over and over again. When you want the action to stop, press the
button again. It will finish the current action, then pop back up.

Most models, including Wolf Sheep Predation, have a once button called "setup” and a forever
button called "go". Many models also have a once button called "go once" or "step once" which is
like "go" except that it advances the model by one time step instead of over and over. Using a once
button like this lets you watch the progress of the model more closely.

Stopping a forever button is the normal way to stop a model. It's safe to pause a model by stopping
a forever button, then make it go on by pressing the button again. You can also stop a model with
the "Halt" item on the Tools menu, but you should only do this if the model is stuck for some reason.
Using "Halt" may interrupt the model in the middle of an action, and as the result the model could
get confused.

« If you like, experiment with the "setup" and "go" buttons in the Wolf Sheep
Predation model.

Do you ever get different results if you run the model several times with the same
settings?

28 Tutorial #1: Models

NetLogo 3.1.1 User Manual
Adjusting Settings: Sliders and Switches

The settings within a model give you an opportunity to work out different scenarios or hypotheses.
Altering the settings and then running the model to see how it reacts to those changes can give you
a deeper understanding of the phenomena being modeled. Switches and sliders give you access to
a model's settings.

Here are the switches and sliders in Wolf Sheep Predation:

@

5
setup 90 8% show-energy?

Grass settings

Egg grass? | N e

grass-regrowth-time 30

Sheep settings Wolf settings

initial-number-sheep 82 || initial-number-wolves 49

sheep-gain-from-food 4.0 | wolf-gain-from-food 20.0

sheep-reproduce 4.0% || wolf-reproduce 5.0%

Let's experiment with their effect on the behavior of the model.

» Open Wolf Sheep Predation if it's not open already.

 Press "setup" and "go" and let the model run for about a 100 time-ticks.
(Note: there is a readout of the number of ticks right above the plot.)

« Stop the model by pressing the "go" button.

What happened to the sheep over time?

Let's take a look and see what would happen to the sheep if we change one of the
settings.

e Turn the "grass?" switch on.
* Press "setup" and "go" and let the model run for a similar amount of time as
before.

What did this switch do to the model? Was the outcome the same as your previous
run?

Just like buttons, switches have information attached to them. Their information is set up in an on/off
format. Switches turn on/off a separate set of directions. These directions are usually not necessary
for the model to run, but might add another dimension to the model. Turning the "grass?" switch on
affected the outcome of the model. Prior to this run, the growth of the grass stayed constant. This is
not a realistic look at the predator—prey relationship; so by setting and turning on a grass growth
rate, we were able to model all three factors: sheep, wolf and grass populations.

Tutorial #1: Models 29

NetLogo 3.1.1 User Manual

Another type of setting is called a slider.

Sliders are a different type of setting then a switch. A switch has two values: on or off. A slider has a
range of numeric values that can be adjusted. For example, the "initial-number—sheep" slider has a
minimum value of 0 and a maximum value of 250. The model could run with 0 sheep or it could run
with 250 sheep, or anywhere in between. Try this out and see what happens. As you move the
marker from the minimum to the maximum value, the number on the right side of the slider changes;
this is the number the slider is currently set to.

Let's investigate Wolf Sheep Predation's sliders.

« Read the contents of the Information tab, located above the toolbar, to learn
what each of this models' sliders represents.

The Information tab is extremely helpful for gaining insight into the model. Within this tab you will
find an explanation of the model, suggestions on things to try, and other information. You may want
to read the Information tab before running a model, or you might want to just start experimenting,
then look at the Information tab later.

What would happen to the sheep population if there was more initial sheep and less
initial wolves at the beginning of the simulation?

 Turn the "grass?" switch off.

« Set the "initial-number-sheep" slider to 100.
« Set the "initial-number-wolves" slider to 20.
* Press "setup" and then "go".

* Let the model run for about 100 time-ticks.

Try running the model several times with these settings.
What happened to the sheep population?

Did this outcome surprise you? What other sliders or switches can be adjusted to
help out the sheep population?

* Set "initial-number—-sheep" to 80 and "initial-number-wolves" to 50. (This is
close to how they were when you first opened the model.)

* Set "sheep-reproduce" to 10.0%.

* Press "setup" and then "go".

* Let the model run for about 100 time ticks.

What happened to the wolves in this run?

When you open a model, all the sliders and switches are on a default setting. If you open a new
model or exit the program, your changed settings will not be saved, unless you choose to save
them.

30 Tutorial #1: Models

NetLogo 3.1.1 User Manual

(Note: in addition to sliders and switches, some models have a third kind of setting, called a
chooser. The Wolf Sheep Predation doesn't have any of these, though.)

Gathering Information: Plots and Monitors

A purpose to modeling is to gather data on a subject or topic that would be very difficult to do in a
laboratory situation. NetLogo has two main ways of displaying data to the user: plots and monitors.

Plots

The plot in Wolf Sheep Predation contains three lines: sheep, wolves, and grass / 4. (The grass
count is divided by four so it doesn't make the plot too tall.) The lines show what's happening in the
model over time. To see which line is which, click on "Pens" in the upper right corner of the plot
window to open the plot pens legend. A key appears that indicates what each line is plotting. In this
case, it's the population counts.

When a plot gets close to becoming filled up, the horizontal axis increases in size and all of the data
from before gets squeezed into a smaller space. In this way, more room is made for the plot to
grow.

If you want to save the data from a plot to view or analyze it in another program, you can use the
"Export Plot" item on the File menu. It saves this information to your computer in a format that can
by read back by spreadsheet and database programs such as Excel. You can also export a plot by
control—clicking (Mac) or right—clicking (Windows) it and choosing "Export..." from the popup menu.

Monitors

Monitors are another method of displaying information in a model. Here are the monitors in Wolf
Sheep Predation:

time-ticks sheep :jwolves grass [/ 4
0 0 | 0 0

The monitor labeled "time-ticks" tells us how much time has passed in the model. The other
monitors show us the population of sheep and wolves, and the amount of grass. (Remember, the
amount of grass is divided by four to keep the plot from getting too tall.)

The numbers displayed in the monitors update continuously as the model runs, whereas the plots
show you data from the whole course of the model run.

Note that NetLogo has also another kind of monitor, called "agent monitors". These will be
introduced in Tutorial #2.

Controlling the View

If you look at the view, you'll see a strip of controls along the top edge. The control strip lets you
control various aspects of the view.

Tutorial #1: Models 31

NetLogo 3.1.1 User Manual

Let's experiment with the effect of these controls.

* Press "setup" and then "go" to start the model running.
* As the model runs, move the slider in the control strip back and forth.

What happens?

This slider is helpful if a model is running too fast for you to see what's going on in
detail.

» Move the speed slider all the way to the right again.
* Now try pressing and unpressing the red arrowhead in the control strip.
* Also try pressing and unpressing the on/off switch in the control strip.

What happens?

The shapes button and the freeze button are useful if you're impatient and want a model to run
faster. When shapes are turned off, turtles are drawn as solid squares; it takes less work for
NetLogo to draw squares than special shapes, so the model runs faster.

The freeze button "freezes" the view. The model continues to run in the background, and plots and
monitors still update; but if you want to see what's happening, you need to unfreeze the view by
turning the switch back on. Most models run much faster when the view is frozen.

The size of the view is determined by three separate settings: X Edge, Y Edge, and Patch Size.
Let's take a look at what happens when we change the size of the view in the "Wolf Sheep
Predation" model.

There are more world and view settings than there's room for in the control strip. The "Edit..." button
lets you get to the rest of the settings.

* Press the "Edit..." button in the control strip.

A dialog box will open containing all the settings for the view:

32 Tutorial #1: Models

NetLogo 3.1.1 User Manual

e OO World & View
World

Location of origin: Center |4 !

17

minimum x coordinate for patches

max-pxcor '17

maximum x coordinate for patches

1

minimum y coordinate for patches

max-pycor |17 Torus: 35 x 35
maximum y coordinate for patches M World wraps horizontally
@ World wraps vertically

View

Patch size (pixels) 12.0

Font size (of turtle and patch labels) 10

@ Turtle shapes

@ Smooth edges (slower)
only affects 3D view

' Cancel ' ' Apply ' (OK)

What are the current settings for max—pxcor, min—pxcor, max—pycor, min—pycor, and
Patch size?

* Press "cancel" to make this window go away without changing the settings.
* Place your mouse pointer next to, but still outside of, the view.

You will notice that the pointer turns into a crosshair.
» Hold down the mouse button and drag the crosshair over the view.

The view is now selected, which you know because it is now surrounded by a gray
border.

* Drag one of the square black "handles". The handles are found on the edges
and at the corners of the view.

» Unselect the view by clicking anywhere in the white background of the
Interface tab.

* Press the "Edit..." button again and look at the settings.

What numbers changed?

Tutorial #1: Models

33

NetLogo 3.1.1 User Manual

What numbers didn't change?

The NetLogo world is a two dimensional grid of "patches". Patches are the individual squares in the
grid.

In Wolf Sheep Predation, when the "grass?" switch is on the individual patches are easily seen,
because some of them are green, while others are brown.

Think of the patches as being like square tiles in a room with a tile floor. By default, exactly in the
middle of the room is a tile labeled (0,0); meaning that if the room was divided in half one way and
then the other way, these two dividing lines would intersect on this tile. We now have a coordinate
system that will help us locate objects within the room:

How many tiles away is the (0,0) tile from the right side of the room?

How many tiles away is the (0,0) tile from the left side of the room?

In NetLogo, the number of tiles from right to left is called world—width. And the number of tiles from
top to bottom is world—height. These numbers are defined by top, bottom, left and right boundaries.

(0,0

T I e—— !
Screen Edge X R Screen Edge X

34 Tutorial #1: Models

NetLogo 3.1.1 User Manual

Screen Edge Y

00

Screen Edge Y

In these diagrams, max—pxcor is 3 , min—pxcor is —3, max—pycor is 2 and min—pycor is —-2.

When you change the patch size, the number of patches (tiles) doesn't change, the patches only get
larger or smaller on the screen.

Let's look at the effect of changing the minimum and maximum coordinates in the world.

 Using the Edit dialog that is still open, change max—pxcor to 30 and
max—pycor value to 10. Notice that min—pxcor and min—pycor change too.
That's because by default the origin (0,0) is in the center of the world.
What happened to the shape of the view?
 Press the "setup” button.

Now you can see the new patches you have created.

« Edit the view again.
» Change the patch size to 20 and press "OK".

What happened to the size of the view? Did its shape change?

Editing the view also lets you change other settings, including the font size of labels and whether
the view uses shapes. Feel free to experiment with these and other settings as well.

Once you are done exploring the Wolf Sheep Predation model, you may want to take some time just
to explore some of the other models available in the Models Library.

The Models Library

The library contains five sections: Sample Models, Curricular Models, Code Examples, HubNet
Calculator Activities, HubNet Computer Activities.

Tutorial #1: Models 35

NetLogo 3.1.1 User Manual
Sample Models
The Sample Models section is organized by subject area and currently contains more than 180
models. We are continuously working on adding new models to it, so come visit this section at a
later date to view the new additions to the library.
Some of the folders in Sample Models have folders inside them labeled "(unverified)". These

models are complete and functional, but are still in the process of being reviewed for content,
accuracy, and quality of code.

Curricular Models
These are models designed to be used in schools in the context of curricula developed by the CCL
at Northwestern University. Some of these are models are also listed under Sample Models; others

are unigue to this section. See the info tabs of the models for more information on the curricula they
go with.

Code Examples
These are simple demonstrations of particular features of NetLogo. They'll be useful to you later

when you're extending existing models or building new ones. For example, if you wanted to put a
histogram within your model, you'd look at "Histogram Example" to find out how.

HubNet Calculator & Computer Activities

This section contains participatory simulations for use in the classroom. For more information about
HubNet, see the_HubNet Guide.

What's Next?

If you want to learn how to explore models at a deeper level,_Tutorial #2: Commands will introduce
you to the NetLogo modeling language.

In_Tutorial #3: Procedures you can learn how to alter and extend existing models and build your
own models.

36 Tutorial #1: Models

Tutorial #2: Commands

In Tutorial #1, you had the opportunity to view some of the NetLogo models, and you have
successfully navigated your way through opening and running models, pressing buttons, changing
slider and switch values, and gathering information from a model using plots and monitors. In this
section, the focus will start to shift from observing models to manipulating models. You will start to
see the inner workings of the models and be able to change how they look.

Sample Model: Traffic Basic

» Go to the Models Library (File menu).

» Open up Traffic Basic, found in the "Social Science" section.

* Run the model for a couple minutes to get a feel for it.

» Consult the Information tab for any questions you may have about this model.

In this model, you will notice one red car in a stream of blue cars. The stream of cars are all moving
in the same direction. Every so often they "pile up" and stop moving. This is modeling how traffic
jams can form without any cause such as an accident, a broken bridge, or an overturned truck. No
"centralized cause" is needed for a traffic jam to form.

You may alter the settings and observe a few runs to get a full understanding of the model.

As you are using the Traffic Basic model, have you noticed any additions you would
like to make to the model?

Looking at the Traffic Basic model, you may notice the environment is fairly simple; a black
background with a white street and number of blue cars and one red car. Changes that could be
made to the model include: changing the color and shape of the cars, adding a house or street light,
creating a stop light, or even creating another lane of traffic. Some of these suggested changes are
cosmetic and would enhance the look of the model while the others are more behavioral. We will be
focusing more on the simpler or cosmetic changes throughout most of this tutorial. (Tutorial #3 will
go into greater detail about behavioral changes, which require changing the Procedures tab.)

To make these simple changes we will be using the Command Center.

The Command Center

The Command Center is located in the Interface Tab and allows you to enter commands or
directions to the model. Commands are instructions you can give to NetLogo's agents: turtles,
patches, and the observer. (Refer to the_Interface Guide for details explaining the different parts of
the Command Center.)

Tutorial #2: Commands 37

NetLogo 3.1.1 User Manual

38

In Traffic Basic:

* Press the "setup” button.

» Locate the Command Center.

* Click the mouse in the white box at the bottom of the Command Center.
» Type the text shown here:

Command Center 2| Clear |
observer> ask patches [[| set pcolor yellow]| v

* Press the return key.
What happened to the View?

You may have noticed the background of the View has turned all yellow and the
street has disappeared.

Why didn't the cars turn yellow too?

Looking back at the command that was written, we asked only the patches to change
their color. In this model, the cars are represented by a different kind of agent, called
"turtles". Therefore, the cars did not received these instructions and thus did not
change.

What happened in the Command Center?

You may have noticed that the command you just typed is how displayed in the white
box in the middle of the Command Center as shown below:

Command Center || Clear |

observer> v

* Type in the white box at the bottom of the Command Center the text shown
below:

Tutorial #2: Commands

NetLogo 3.1.1 User Manual

Command Center 2| Clear |
observer> ask patches [set pcolor yellow]

observer> ask turtles [[| set color brown]| v
Was the result what you expected?

Your View should have a yellow background with a line of brown cars in the middle:

®> % ® > ® e o e e % ® &

The NetLogo world is a two dimensional world that is made up of turtles, patches and an observer.
The patches create the ground in which the turtles can move around on and the observer is a being
that oversee everything that is going on in the world. (For a detailed description and specifics about
this world, refer to the_NetLogo Programming Guide.)

In the Command Center, we have the ability to give the observer a command, the turtles a
command, or the patches a command. We choose between these options by using the popup menu
located in the bottom left corner of the Command Center. You can also use the tab key on your
keyboard to cycle through the different options.

* In the Command Center, click on the "observer>" in the bottom left corner:

Command Center 2| Clear |

observer> ask patches [set pcolor yellow]
observer> ask turtles [set color brown]

obser\uarx v
observer
patches
or use Tab key

Tutorial #2: Commands 39

NetLogo 3.1.1 User Manual

» Choose "turtles" from the popup menu.

» Type set color pink and press return.

* Press the tab key until you see "patches>" in the bottom left corner.
» Type set pcolor white and press return.

What does the View look like now?

Do you notice any differences between these two commands and the observer
commands from earlier?

The observer oversees the world and therefore can give a command to the patches or turtles using
ask. Like in the first example (observer>ask patches [set pcolor yellow]), the observer

has to ask the patches to set their pcolor to yellow. But when a command is directly given to a group
of agents like in the second example (patches>set pcolor white), you only have to give the
command itself.

* Press "setup".

What happened?

Why did the View revert back to the old version, with the black background and white road? Upon
pressing the "setup" button, the model will reconfigure itself back to the settings outlined in the
Procedures tab. The Command Center is not often used to permanently change the model. It is
most often used as a tool to customize current models and allows for you to manipulate the
NetLogo world to further answer those "What if* questions that pop up as you are investigating the
models. (The Procedures tab is explained in the next tutorial, and in the_Programming Guide.)

Now that we have familiarized ourselves with the Command Center, let's look at some more details
about how colors work in NetLogo.

Working With Colors

You may have noticed in the previous section that we used two different words for changing color:
color and pcolor.

What is the difference between color and pcolor?
» Choose "turtles" from the popup menu in the Command Center (or use the
tab key).
» Type set color blue and press return.

What happened to the cars?

40 Tutorial #2: Commands

NetLogo 3.1.1 User Manual

Think about what you did to make the cars turn blue, and try to make the patches
turn red.

If you try to ask the patches to set color red, an error message occurs:

Command Center | Clear |
turtles> set color yellow

ERROR: You can't use COLOR in a patch

context, because COLOR is turtle-only.

patches> set color red v

» Type set pcolor red instead and press return.

We call color and pcolor "variables". Some commands and variables are specific to turtles and
some are specific to patches. For example, the color variable is a turtle variable, while the
pcolor variable is a patch variable.

Go ahead and practice altering the colors of the turtles and patches using the set command and
these two variables.

To be able to make more changes to the colors of turtles and patches, or shall we say cars and
backgrounds, we need to gain a little insight into how NetLogo deals with colors.

In NetLogo, all colors have a numeric value. In all of the exercises we have been using the name of
the color. This is because NetLogo recognizes 16 different color names. This does not mean that
NetLogo only recognizes 16 colors. There are many shades in between these colors that can be
used too. Here's a chart that shows the whole NetLogo color space:

Tutorial #2: Commands 41

NetLogo 3.1.1 User Manual

black = 0 white = 9.9

gray =5 8 9 9.9

red = 15 18 19 19.9
orange = 25 21 22 27 28 29 299
brown = 35 31 32 36 37 38 39 399
yellow = 45 41 42 47 48 49 49.9
green = 55 51 52 57 58 59 599
lime = 65 61 62 63 b 67 68 69 699
turquoise = 75 71 72 73 b 77 78 79 799
cyan = 85 81 82 8 87 88 89 899

sky = 95 91 92 93 96 97 98 99 999

blue = 105 101 102 103 107 108 109 109.9
violet = 115 111 112 113 117 118 119 119.9
magenta = 125 121 122 123 127 128 129 1299
pink = 135 131 132 133 135 136 137 138 139 139.9

To get a color that doesn't have its own name, you just refer to it by a number instead, or by adding

or
Sal
Sal

subtracting a number from a name. For example, when you type set color red, this does the
me thing as if you had typed set color 15. And you can get a lighter or darker version of the
me color by using a number that is a little larger or a little smaller, as follows.

» Choose "patches" from the popup menu in the Command Center (or use the
tab key).
» Type set pcolor red — 2 (The spacing around the "-" is important.)
By subtracting from red, you make it darker.

» Type set pcolor red + 2

By adding to red, you make it lighter.

You can use this technique on any of the colors listed in the chart.

A

In

gent Monitors and Agent Commanders

the previous activity, we used the set command to change the colors of all the cars. But if you

recall, the original model contained one red car amongst a group of blue cars. Let's look at how to

ch

42

ange only one car's color.

Tutorial #2: Commands

NetLogo 3.1.1 User Manual

» Press "setup” to get the red car to reappear.

* If you are on a Macintosh, hold down the Control key and click on the red car.
On other operating systems, click on the red car with the right mouse button.

» From the popup menu that appears, choose "inspect turtle 0"

A turtle monitor for that car will appear:

who ©

color 15.0
heading 290.

Xcor ©.772186068086915

[~

ycor 0.9

shape “car
label
label-color 9.9999
breed turtles
hidden? false

size 1.9

pen-size 1.9
pen-mode “up
speed 6.1

speed-limit 1

speed-min ©

id

Taking a closer look at this turtle monitor, we can see all of the variables that belong to the red car.
A variable is a place that holds a value that can be changed. Remember when it was mentioned
that all colors are represented in the computer as numbers? The same is true for the agents. For
example, turtles have an ID number we call their "who" number.

Let's take a closer look at the turtle monitor:

What is this turtle's who number?
What color is this turtle?

What shape is this turtle?

This turtle monitor is showing a turtle who that has a who number of 0, a color of 15 (red —— see
above chart), and the shape of a car.

There are two other ways to open a turtle monitor besides right—clicking (or control—clicking,
depending on your operating system). One way is to choose "Turtle Monitor" from the Tools menu,
then type the who number of the turtle you want to inspect into the "who" field and press return. The

Tutorial #2: Commands 43

NetLogo 3.1.1 User Manual

other way is to type inspect turtle 0 (or other who number) into the Command Center.

You close a turtle monitor by clicking the close box in the upper left hand corner (Macintosh) or
upper right hand corner (other operating systems).

Now that we know more about Agent Monitors, we have three ways to change an individual turtle's
color.

One way is to use the box called an Agent Commander found at the bottom of an Agent Monitor.
You type commands here, just like in the Command Center, but the commands you type here are
only done by this particular turtle.

* In the Agent Commander of the Turtle Monitor for turtle O, type set color
pink.

What happens in the View?

Did anything change in the Turtle Monitor?

A second way to change one turtle's color is to go directly to the color variable in the Turtle Monitor
and change the value.

« Select the text to the right of "color" in the Turtle Monitor.
e Type in a new color such as green + 2.

What happened?

The third way to change an individual turtle's or patch's color is to use the observer. Since, the
observer oversees the NetLogo world, it can give commands that affect individual turtles, as well as
groups of turtles.

* In the Command Center, select "observer" from the popup menu (or use the
tab key).
» Type ask turtle O [set color blue] and press return.

What happens?

Just as there are Turtle Monitors, there are also Patch Monitors. Patch monitors work
very similarly to Turtle Monitors.

Can you make a patch monitor and use it to change the color of a single patch?

44 Tutorial #2: Commands

NetLogo 3.1.1 User Manual

If you try to have the observer ask patch 0 [set pcolor blue], you'll get an error message:

Command Center 2| Clear |

ERROR: Expected a number here, rather than
a list or block.

patches> ask patch @ [set pcolor blue] v

To ask an individual turtle to do something, we use its who number. But patches don't have who
numbers, therefore we need to refer to them some other way.

Remember, patches are arranged on a coordinate system. Two numbers are needed to plot a point
on a graph: an x—axis value and a y—axis value. Patch locations are designated in the same way as
plotting a point.

» Open a patch monitor for any patch.

pxcor - 11

pycor -4
pcolor @.0
plabel

plabel-color 9.9999

| v

The monitor shows that for the patch in the picture, its pxcor variable is —11 and its
pycor variable is —4. If we go back to the analogy of the coordinate plane and
wanted to plot this point, the point would be found in the lower left quadrant of the
coordinate plane where x=-11 and y=—4.

To tell this particular patch to change color, use its coordinates.

* In the bottom of the patch monitor, enter set pcolor blue and press
return.

Typing a command in a turtle or patch monitor addresses only that turtle or patch.
You can also talk to a single patch from the Command Center:

* In the Command Center, enter ask patch —11 -4 [set pcolor
green] and press return.

What's Next?

At this point, you may want to take some time to try out the techniques you've learned on some of
the other models in the Models Library.

Tutorial #2: Commands 45

NetLogo 3.1.1 User Manual

In_Tutorial #3: Procedures you can learn how to alter and extend existing models and build your
own models.

46 Tutorial #2: Commands

Tutorial #3:; Procedures

In Tutorial #2, you learned how to use command centers and agent monitors to inspect and modify
agents and make them do things. Now you're ready to learn about the real heart of a NetLogo
Model: the Procedures tab. This tutorial leads you through the process of building a complete
model, built up stage by stage, with every step explained along the way.

You've already been exposed to the three types of agents you can give commands to in NetLogo:
turtles, patches, and the observer. As you start to write your own procedures, it'll be helpful to keep
in mind how people usually think of these three different kinds of agents. The turtles and patches
usually don't use information about the whole world. They mostly use information about what's close
to them. The observer, on the other hand, typically uses and accesses the whole world. Also, while
patches can't move and often represent some sort of environment, turtles can move around in the
world.

Setup and Go

To start a new model, select "New" from the the File menu. Then begin making your model by
creating a once button called 'setup'.

Here's how to make the button:
1. Click on the button icon in the Toolbar

2. Click where you want the button to be in the empty white area of the Interface tab
3. When the dialog box for editing the properties of the button opens, type setup in the box

labeled "Code"
e 06 Button
Commands
setup

Display name

Action key

" Force view update after each run
Checking this box produces smoother animation, but may make the button run more slowly.

(Cancel) HH

4. Press "OK" to dismiss the dialog box

Tutorial #3: Procedures 47

NetLogo 3.1.1 User Manual

Now you have a button called 'setup’. It will execute the procedure 'setup’ when pressed, which
once we define it, will do just that —— set up the NetLogo world.

At this point, both the new button and the Interface tab have turned red. That's because there is no
procedure called 'setup'! If you want to see the actual error message, click on the button:

[Interface | Information Procedures |

we W @R B O T E=OS

Button Slider Switch Chooser Monitor Plot Output Text

%44 mmmmmm— > 33/Edit..| | 30]

@

setup

Now switch to the Procedures Tab and create the 'setup’ procedure shown below. Notice that the
lines are indented different amounts. A lot of people find it very helpful to indent their code in a way
at least similar to how it's done here. It helps them keep track of where they're at inside of a
procedure and makes what they write easier for others to read as well.

" Interface Information - Procedures |

21 Y, | [rroceiures]
Find... Check

to setup
ca
crt 100
ask turtles
[fd random max-pxcor]

end

One line at a time:
to setup begins defining a procedure named "setup".

ca is short for clear—all (you can also spell it out if you want). This command will blank out the view,
initialize any variables you might have to 0, and remove all turtles. Basically, it wipes the slate clean
for a new run of the project.

crt 100 will then create 100 turtles. (crt is short for create—turtles.) If the turtles didn't move after
this command is given, each of these turtles would begin on the center patch (at location 0,0). You
would only see what looks like one turtle; they'd all be on top of each other —— lots of turtles can
share the same patch. Only the last turtle to arrive on the patch would be visible. Each of these
newly—created turtles has its own color, its own heading. All of the turtles are evenly distributed
around the circle.

ask turtles [...] tells each turtle to execute, independently, the instructions inside the brackets.
Note that crt is not inside the brackets. If the agent (observer, turtle, or patch) is not specified using

48 Tutorial #3: Procedures

NetLogo 3.1.1 User Manual

ask, the observer runs it. Here the observer runs the ask, but the turtles run the commands inside
the ask.

fd random max—pxcor is a command that also uses "reporters". Reporters, as opposed to
commands, are instructions that report a result. Each turtle will first run the reporter random
max—pxcor which will report a random integer at least 0 but less than 'max—pxcor' (the largest
patch coordinate in the x direction). It then takes this number, and goes fd (short for forward) that
number of steps, in the direction of its heading. The steps are the same size as the patches.

end completes the definition of the "setup" procedure.

When you're done typing in the code, switch to the Interface tab and press your 'setup’ button . You
will see the turtles quickly spread out in a rough cluster:

Notice the density distribution of the turtles in the view. Press 'setup' a couple more times, and
watch how the turtles' arrangement changes. Keep in mind that some turtles may be right on top of
each other.

Can you think of other ways to randomly distribute the turtles around the world? Note that if a turtle
moves off the edge of the view, it "wraps", that is, comes in the other side. (this is the default
behavior, it can be modified, see the_Topology section of the Programming Guide for more
information)

Make a forever button called 'go’. Again, begin by creating a button, but this time check the "forever"
checkbox in the edit dialog.

Tutorial #3: Procedures 49

NetLogo 3.1.1 User Manual

]

setup
e Ne Button
Agent(s) | Observer |4] _ Forever
Commands
go

Display name

Action key

@ Force view update after each run
Checking this box produces smoother animation, but may make the button run more slowly.

',_‘Cancel l (OK)

Then add its procedure to the Procedures tab:

to go
move-turtles
end

But what is move-turtles? Is it a primitive (in other words, built—in to NetLogo), like fd is? No, it's a
procedure that you're about to write, right after the go procedure:

to move-—turtles
ask turtles [
set heading random 360
fd 1

]

end

Be careful of the spacing around the "-". In Tutorial #2 we used red — 2, with spaces, in order to
subtract two numbers, but here we want move-turtles, without spaces. The "-" combines 'move'
and 'turtles' into one word.

Line by line:

ask turtles [commands] says that each turtle should execute the commands in the brackets.

set heading random 360 is another command that uses a reporter. First, each turtle picks a
random integer between 0 and 359 (random doesn't include the number you give it as a possible
result). Then the turtle sets its heading to the number it picked. Heading is measured in degrees,
clockwise around the circle, starting with O degrees at twelve o'clock (north).

fd 1: Each turtle moves forward one step in the new direction it just set its heading to.

50 Tutorial #3: Procedures

NetLogo 3.1.1 User Manual

Why couldn't we have just written that in go? We could, but during the course of building your
project, it's likely that you'll add many other parts. We'd like to keep go as simple as possible, so
that it is easy to understand. Eventually, it could include many other things you want to have happen
as the model runs, such as calculating something or plotting the results. Each of these
sub—procedures could have its own name.

The 'go’ button you made in the Interface tab is a forever button, meaning that it will continually
execute its code until you shut it off (by clicking on it again). After you have pressed 'setup' once, to
create the turtles, press the 'go' button. Watch what happens. Turn it off, and you'll see that all
turtles stop in their tracks.

We suggest you start experimenting with other turtle commands. You might try typing turtles>
pendown into the Command Center and then pressing go. Another thing to try is changing set
heading random 360 to rt random 360 inside of move-turtles. ("rt" is short for "right turn".) Also,
you can try changing set heading random 360 to It random 45 inside of move-turtles. Type
commands into the Command Center (like set color red), or add them to setup, go, or
move-turtles. Note that when you enter commands in the Command Center, you must choose
turtles>, patches>, or observer> in the popup menu on the left, depending on which agents are
going to execute the commands. You can also use the tab key, which you might find more
convenient than using the popup menu. turtles>commands is identical to observer> ask turtles [
commands], and patches>commands is identical to O> ask patches [commands].

Play around. It's easy and the results are immediate and visible —— one of NetLogo's many
strengths. Regardless, the tutorial project continues...

Patches and Variables

Now we've got 100 turtles aimlessly moving around, completely unaware of anything else around
them. Let's make things a little more interesting by giving these turtles a nice background against
which to move. Go back to the 'setup' procedure. We can rewrite it as follows:

patches—own [elevation]

to setup
ca
setup—patches
setup-turtles
end

The line at the top, patches—own [elevation] declares that we have a variable for the patches,
called elevation. Our 'setup—patches' procedure that we haven't defined yet will then use this
variable. We also still need to define 'setup—turtles' as well, but, for now, here's how to define
setup—patches:

to setup—patches
ask patches
[set elevation random 10000]
diffuse elevation 1
ask patches
[set pcolor scale—color green elevation 1000 9000]
end

Tutorial #3: Procedures 51

NetLogo 3.1.1 User Manual

The setup—patches procedure sets the elevation and color of every patch. First, each patch picks a
random integer between 0 and 9999 and sets its elevation variable to that number.

We then use an observer primitive, diffuse, that smoothes out the distribution of this variable over
the neighboring patches. Remember that primitives are built in procedures in NetLogo, as opposed
to procedures that you define.

Scale—color is a reporter that uses the different values of elevation to assign colors to the patches.
In this case, we're assigning different shades of green to all the patches. (Don't worry about the
numbers given to diffuse and scale—color just yet...) The larger elevation is, the lighter the shade
of green. Low values of elevation will result in darker shades.

The only part remaining in our new 'setup' that is still undefined is setup-turtles:

to setup-turtles
crt 100
ask turtles
[fd random max—pxcor]
end

Setup—turtles is exactly what we were doing in the old setup procedure.
After typing all of this in, press the 'setup’ button back in the Interface tab. Voila! A lush NetLogo

landscape complete with turtles and green patches appears. After seeing the new 'setup’ work a few
times, you may find it helpful to read through the procedure definitions again.

Here's a way for you to see what diffuse does. Return to the Procedures tab, and use a semicolon
to 'deactivate' the diffuse command like this:

52 Tutorial #3: Procedures

NetLogo 3.1.1 User Manual

;diffuse elevation 1

Semicolons are very useful in writing procedures. They can be used as above to save you from
having to delete code to try something else out and then having to rewrite them. Also, they can be
used to add some explanatory text to your procedures. A lot of people like to do this to make their
procedures more readable to others. Notice that all the text to the right of a semicolon becomes

gray.

Press 'setup' again —— looks different, doesn't it? This is because, as mentioned above, diffuse has
each patch share its value of elevation with all its neighbors, by having every patch reset its value of
elevation to a new value that depends on the value of elevation all around it. For further explanation
of how diffuse works, go to the_Primitives Dictionary if you'd like. Also, it may help to toy with the
values being passed to it and see what happens.

We're now prepared to create some kind of dialog between the turtles and the patches. In fact, we
even have an idea for a project here. Notice that we called the patch variable 'elevation’, and that
our landscape sort of looks topographical? We're going to have our turtles do what is called
‘hill-climbing', where every turtle seeks to find the highest elevation it can.

In order to do this, we will learn how to write more complex instructions. Go to the Command
Center, and type O> show max values—from patches [elevation] and show min values—from
patches [elevation]. These two reporters will, respectively, search over all the patches to return to
you the highest elevation and the lowest. These commands work like this (you can read about them

in the NetLogo_Primitives Dictionary):

Look up 'values—from' in the dictionary. It shows "values—from AGENTSET [expression]" and says it
returns a list. In this case, it looks at the expression (elevation) for each agent in the agentset
(patches) and returns all of these as a list of elevations.

Look up 'min' in the dictionary. It shows "min list" and says it's a reporter. So it takes the list of
elevations and reports the smallest value.

'Show' displays this value in the command center.

We will use these reporters —— max values—from patches [elevation] and min values—from
patches [elevation] —— in our model.

Just in case we end up needing the highest and lowest elevation in several places in our
procedures, let's make a shortcut. We'll do a little extra work now so that if we need these values
later, we'll have a shortcut to use. First, at the top of your code (right after the 'patches—own'
declaration), declare two global variables as such:

globals [highest ;; the highest patch elevation
lowest] ;; the lowest patch elevation

(Notice the use of semicolons here. Although the names of the global variables are descriptive, the
semicolons allow us to describe the variables even more.)

Global variables can be used by all the agents in the model. In particular, patches can use

highest and lowest in the setup—patches procedure. We need to store the highest and lowest
elevations in these global variables once, and then everyone will have quick access to them after

Tutorial #3: Procedures 53

NetLogo 3.1.1 User Manual
that. Write:

to setup—patches
ask patches
[set elevation random 10000]
diffuse elevation 1
ask patches
[set pcolor scale—color green elevation 1000 9000]
set highest max values—from patches [elevation]
set lowest min values—from patches [elevation]
ask patches [
if elevation > (highest — 100)
[set pcolor white]
if elevation <(lowest + 100)
[set pcolor black]]
end

Now we have saved the highest and lowest points in our terrain and displayed them graphically.

Look at the last two commands, the if commands. Each patch, when it runs these commands,
compares its own value of elevation to our global variables highest and lowest. If the comparison
reports 'true’, the patch executes the commands inside the brackets. In this case, the patch changes
its color. If the comparison reports 'false’, the patch skips over the commands inside the brackets.

These ifs cause all patches whose value of elevation is NEAR to the highest (within about 1% for
our values) change their color to white, and all patches whose values are NEAR to the lowest
become black. We want this so that they'll be easier to see. You can make a couple of quick
changes here if you wish —— they won't affect the rest of the model. For example, instead of saying
'set pcolor white' and 'set pcolor black', you can say 'set pcolor blue' and 'set pcolor red' (or
whatever other colors you may wish). Also, you can change the range of 'highest peaks' and 'lowest
peaks' by changing the number 100 to some other number.

After this, create two monitors in the Interface tab with the Toolbar. (You make them just like buttons
and sliders, using the monitor icon on the Toolbar.) Name one of them highest and the other one
lowest. The reporters you'll want in each of them happen to be highest and lowest as well. (If

you want to learn more about reporters, you can look them up in the_NetLogo Programming Guide).
Now every time you click 'setup' and redistribute the values of elevation, you'll know exactly what
the highest and lowest elevations are, and where they can be found.

@ [

setup ‘ 90 o
highest 1 lowest
0 o

An Uphill Algorithm

Okay. Finally we're ready to start hill-climbing. To rehash: we've got some turtles randomly spread
out from the origin; and we've got a landscape of patches, whose primary attribute is their elevation.
Lastly, we have two kinds of tools to help us understand the patch landscape: each patch has a
color, depending on its value of elevation, and we have a pair of monitors telling us what the highest
peak and lowest valley are. What we need now is for the turtles to wander around, each trying to get
to the patch that has the highest elevation.

54 Tutorial #3: Procedures

NetLogo 3.1.1 User Manual

Let's try a simple algorithm first. We'll assume three things: 1), that the turtles cannot see ahead
farther than just one patch; 2), that each turtle can move only one square each turn; and 3), that
turtles are blissfully ignorant of each other. Before, we had a procedure move-turtles like this:

to move-turtles
ask turtles [
set heading random 360
fd 1

]

end

But now we don't want them to move randomly about. We want each turtle to look at the elevation of
each patch directly around it, and move to the patch with the highest elevation. If none of the
patches around it have a higher elevation than the patch it is on, it'll stay put. This new procedure
should replace 'move-turtles' inside of 'go’. Type in the following code and run it once or twice:

;; each turtle goes to the highest elevation in a radius of one
to move—to—local-max
ask turtles [
set heading uphill elevation
if (elevation—of patch—ahead 1) > elevation
[fd 1]
]

end

Now that you've seen the uphill algorithm work in the model, let's go through the new primitives
involved. (If you haven't run the model yet since writing 'move—-to—local-max’, give it a try.) There
are three new primitives here: 'uphill’, '-of', and 'patch—ahead'. 'uphill elevation' finds the heading

to the patch with the highest value of elevation in the patches in a one—patch radius of the turtle.
Then through the use of the command 'set heading', the turtle sets its heading to that direction.
‘elevation—of patch—ahead 1' has each turtle look at the variable elevation in the patch on which the
turtle would be if it went forward 1. If the test reports true, the turtle moves itself forward 1. (The test
is necessary because if the turtle is already on the peak, we don't want it to move off it!)

Go ahead and type that in, but before you test it out by pressing the 'go’ button, ask yourself this
guestion: what do you think will happen? Try and predict how a turtle will move, where it will go, and
how long it'll take to get there. When you're all set, press the button and see for yourself.

Surprised? Try to understand why the turtles converge to their peaks so quickly. Maybe you don't
believe the algorithm we've chosen works 'correctly’. There's a simple procedure you can make to
test it. write a procedure recolor—patches so that it says:

to recolor—patches
ask patches

[
set elevation pycor
set pcolor scale—color green elevation
min—pycor max—pycor

]

end

Press 'setup'. The model looks the same as it did before because recolor—patches hasn't been run
yet. Instead of making a button that calls your testing procedure, let's do something different. Type
observer>recolor—patches into the command center, the procedure gets called. Now, when you
press 'go’, see that the turtles all head for the highest elevation —— the top of the screen.

Tutorial #3: Procedures 55

NetLogo 3.1.1 User Manual

Another common tool to see what's going on is to write turtles> pd in the Command Center. Then
each turtle traces its path with its color. This will show you where the turtle has been.

Our turtles rapidly arrive at local maxima in our landscape. Local maxima and minima abound in a
randomly generated landscape like this one. Our goal is to still get the turtles to find an 'optimal
maximum', which is one of the white patches.

Part of the problem is that our terrain is terribly lumpy. Every patch picked a random elevation, and
then we diffused these values one time. This really doesn't give us a continuous spread of elevation
across the view, as you might have noticed. We can correct this problem to an arbitrary degree by
diffusing more times. Replace the line:

diffuse elevation 1

with:

repeat 5 [diffuse elevation 1]

The repeat command is another way for NetLogo to loop (besides making a forever button, which
you already know how to do). Repeat takes a number (here, 5) and some commands (here, the
diffuse command), and executes the commands that number of times (here, five times). Try it out,
and look at the landscape (i.e. press 'setup’ and see what you think). Then, press 'go’ and watch the
turtles' behavior. (Remember that the lighter the patch, the greater the elevation.)

Obviously, fewer peaks make for an improvement in the turtles' performance. On the other hand,

maybe you feel like this is cheating —— the turtles really aren't doing any better, it's just that their
problem was made easier. True enough. If you call repeat with an even higher number (20 or so),

56 Tutorial #3: Procedures

NetLogo 3.1.1 User Manual

you'll end up with only a handful of peaks, as the values become more evenly distributed with every
successive call. (Watch the values in the monitors.)

In order to specify how 'smooth' you want your world to be, let's make it easier to try different
values. Maybe one time you'll want the turtles to try and 'solve a hard world', and maybe another
time you'll just want to look at an easy landscape. So we'll make a global variable named
"smoothness". Create a slider in the Interface tab and call it "smoothness" in the editing box. The
minimum can be 0, and the maximum can be 20 or so. Then change your code to:

repeat smoothness [diffuse elevation 1]
Experiment with the turtles' performance in different terrains.

We still haven't even begun to solve the problem of getting all the turtles to the highest elevation,
though. So far we've just been getting the turtles to the highest point that's near them. If a turtle
starts off in one corner of the world on a hill and there's a mountain in a different corner, the turtle
will never find the mountain. To find the mountain, the turtle would have to go down off the hill first,
but in our model, turtles only move up. Notice that the individual turtles don't use 'highest' anywhere.
The turtles just look at elevations close to them and go the highest point they can see.

Before trying something else, it'd be nice if we could have some other, more precise method for
evaluating the turtles' performance. Fortunately, NetLogo allows us to plot data as we go along.

To make plotting work, we'll need to create a plot in the Interface tab, and set some settings in it.
Then we'll add one more procedure to the Procedures tab, which will update the plot for us.

Let's do the Procedures tab part first. Change go to call the new procedure we're about to add:

to go
move-to—local-max
do-plots

end

Now add the new procedure. What we're plotting is the number of turtles who've reached our
'‘peak-zone' (within 1% of the highest elevation) at some given time.

to do—plots
set—current-plot "Turtles at Peaks"
plot count turtles with
[elevation >= (highest — 100)]
end

Note that we use the plot primitive to add the next point to a plot, but before doing that, we need to
tell NetLogo which plot we want, since later our model might have more than one plot.

Thus we're plotting the number of turtles within 100 units of our maximum elevation at some given
point in time. The plot command moves the current plot pen to the point that has x— coordinate
equal to 1 greater than the old x— coordinate and y—coordinate equal to the value given in the plot
command (in this case, the number of turtles whose elevation is within 100 of highest). Then the
plot command draws a line from the current position of the plot pen to the last point it was on.

In order for set—current—plot "Turtles at Peaks" to work, you'll have to add a plot to your
model in the Interface tab, then edit it so its name is "Turtles at Peaks", the exact same name used

Tutorial #3: Procedures 57

NetLogo 3.1.1 User Manual

in the code. Even one extra space will throw it off — it must be exactly the same in both places.

Note that when you create the plot you can set the minimum and maximum values on the x and y
axes, and the color of the default plot pen (pick any color you like). You'll want to leave the
"Autoplot?" checkbox checked, so that if anything you plot exceeds the minimum and maximum
values for the axes, the axes will automatically grow so you can see all the data.

Now reset the project and run it again. You can now watch the plot be created as the model is
running. If you notice that your plot doesn't look exactly like the picture below, try to think about why
it doesn't look the same. If you think it's because 'go' remains pressed until you manually unpress it,
we'll fix that problem by the end of the tutorial. Remember that we kept "Autoplot?" on. This allows
the plot to readjust itself when it runs out of room.

Turtles at Peaks Pens
39.6 ///—

o /

Q

E r~

3

4 /

0/
0 Time 33.8

You might try running the model several times under different settings (i.e. different values of
smoothness) and watch how fast the plot converges to some value, and what fraction of the turtles
make it to the top. You may want to even try the same settings several times.

Some More Detalls

There are a few quirks you may already have noticed. Here are some quick changes you can make.

First, we have a green landscape —— a naturally green turtle is going to be hard to see. In the ask
turtles block in 'setup—turtles', you can say:

if shade—of? green color
[set color red]

Second, instead of always using 100 turtles, you can have a variable number of turtles. Make a
slider variable (say, 'number’):

58 Tutorial #3: Procedures

NetLogo 3.1.1 User Manual

number 55 smoothness 8.0

e OO0 Slider

Global variable smoothness

Minimum 0 Increment 0.1 Maximum 20

Value 8 Units (optional)

'\ Cancel /» (OK)

Then, inside of setup—turtles, instead of ‘crt 100', you can type:

crt number
How does using more or fewer turtles affect the success value displayed by the plot?

Third, when all the turtles have found their local maxima, wouldn't it be nice for the model to stop?
This requires a few lines of code.

« Add a global variable turtles—moved? to the "globals" list:

globals [
highest ;; maximum patch elevation
lowest ;; minimum patch elevation

turtles—-moved? ;; so we know when to stop the model
]
« At the end of the go procedure, add a test to see if any turtles have moved.

to go
set turtles—moved? false
move-to—local-max
do-plots
if not turtles—moved?
[stop]

end

* In move—-to—local-max if a turtle moves, set turtles—moved? to true.

to move—to-local-max
ask turtles [
set heading uphill elevation
if elevation—of patch—ahead 1 > elevation
[
fd 1
set turtles—moved? true
]
]

end

Finally, what rules can you think of that would help turtles escape from lower peaks and all get to
the highest ones? Try writing them.

Tutorial #3: Procedures 59

NetLogo 3.1.1 User Manual
What's Next?

So now you have a nice framework for exploring this problem of hill-climbing, using all sorts of
NetLogo modeling features: buttons, sliders, monitors, plots, and the view. You've even written a
quick procedure to give the turtles something to do. And that's where this tutorial leaves off.

If you'd like to look at some more documentation about NetLogo, the_Interface Guide section of the
manual walks you through every element of the NetLogo interface in order and explains its function.
For a detailed description and specifics about writing procedures, refer to the_NetLogo Programming
Guide.

Also, You can continue with this model if you'd like, experimenting with different variables and
algorithms to see what works the best (what makes the most turtles reach the peaks).

Alternatively, you can look at other models (including the many models in the Code Examples
section of the Models Library) or even go ahead and build your own model. You don't even have to
model anything. It can be pleasant just to watch patches and turtles forming patterns, or whatever.
Hopefully you will have learned a few things, both in terms of syntax and general methodology for
model- building. The entire code that was created above is shown below.

Appendix: Complete Code

The complete model is also available in NetLogo's Models Library, in the Code Examples section.
It's called "Tutorial 3".

patches—own [elevation] ;; elevation of the patch
globals [

highest ;; maximum patch elevation

lowest ;» minimum patch elevation

turtles—-moved? ;; so we know when to stop the model

]

;» We also have two slider variables, 'number' and
;; 'smoothness'. 'number' determines the number of
;; turtles, and 'smoothness' determines how erratic
;; terrain becomes during diffusion of ‘elevation'.

;; resets everything

to setup
ca
setup—patches
setup-turtles

end

;; creates a random landscape of patch elevations
to setup—patches
ask patches [set elevation random 10000]
repeat smoothness [diffuse elevation 1]
ask patches
[set pcolor scale—color green elevation 1000 9000]

set highest max values—from patches [elevation]

set lowest min values—from patches [elevation]
ask patches [

60 Tutorial #3: Procedures

NetLogo 3.1.1 User Manual

if elevation > (highest — 100)
[set pcolor white]

if elevation <(lowest + 100)
[set pcolor black]

]

end

., initializes the turtles
to setup-—turtles
crt number
ask turtles [
if shade—of? green color [set color red]
fd random max—pxcor

]

end

;» RUN-TIME PROCEDURES
;; main program control
to go
set turtles—moved? false
move-to—local-max
do-plots
if not turtles—moved?

[stop]
end

;; each turtle goes to the highest elevation in a radius of one
to move—to—local-max
ask turtles [
set heading uphill elevation
if (elevation—of patch—ahead 1) > elevation
[
fd 1
set turtles—moved? true
]
]

end

to do—plots
set—current—plot "Turtles at Peaks"
plot count turtles with
[elevation >= (highest — 100)]
end

Tutorial #3: Procedures

61

62

NetLogo 3.1.1 User Manual

Tutorial #3: Procedures

Interface Guide

This section of the manual walks you through every element of the NetLogo interface in order and
explains its function.

In NetLogo, you have the choice of viewing models found in the Models Library, adding to existing
models, or creating your own models. The NetLogo interface was designed to meet all these needs.

The interface can be divided into two main parts: NetLogo menus, and the main NetLogo window.
The main window is divided into tabs.

* Interface Tab

¢ Working with Interface Elements
¢ The 2D and 3D Views

¢ Command Center
¢ Plots

» Procedures Tab

* Information Tab

Menus

On Macs, if you are running the NetLogo application, the menubar is located at the top of the
screen. On other platforms, the menubar is found at the top of the NetLogo window.

File Edit Tools Zoom Tabs Help
NetLogo — Untitled

The functions available from the menus in the menubar are listed in the following chart.

Chart: NetLogo Menus

File

New Starts a new model.

Open Opens any NetLogo model on your computer.

Models Library A collection of demonstration models.

Save Save the current model.

Save As Save the current model using a different name.

Save As Applet Used to save a web page in HTML format that has your model
embedded in it as a Java "applet".

Print Sends the contents of the currently showing tab to your printer.

Export World Saves all variables, the current state of all turtles and patches,
the drawing and the output area to a file.

Export Plot Saves the data in a plot to a file.

Export All Plots Saves the data in all the plots to a file.

Export View Save a picture of the current view (2D or 3D) to a file (in PNG
format).

Interface Guide

63

NetLogo 3.1.1 User Manual

Export Interface

Save a picture of the current Interface tab. (in PNG format)

Export Output Save the contents of the output area or the output section of
the command center to a file.
Import World Load a file that was saved by Export World.

Import Patch Colors

Load an image into the patches, see the_import—pcolors
command.

Import Drawing

Load an image into the drawing, see the_import—drawing
command.

Quit Exits NetLogo. (On Macs, this item is on the NetLogo menu

instead.)
Edit

Cut Cuts out or removes the selected text and temporarily saves it
to the clipboard.

Copy Copies the selected text.

Paste Places the clipboard text where cursor is currently located.

Delete Deletes selected text.

Undo Undo last text editing action you performed.

Redo Redo last undo action you performed.

Select All Select all the text in the active window.

Find Finds a word or sequence of characters within the Information
or Procedures tabs.

Find Next Find the next occurrence of the word or sequence you last
used Find with.

Shift Left / Used in the Procedures tab to change the indentation level of

Shift Right code.

Comment / Used in the Procedures tab to add or remove semicolons from

Uncomment code (semicolons are used in NetLogo code to indicate
comments).

Tools
Halt Stops all running code, including buttons and the command

center. (Warning: since the code is interrupted in the middle of
whatever it was doing, you may get unexpected results if you
try to continue running the model without first pressing "setup”
to start the model run over.)

Globals Monitor

Displays the values of all global variables.

Turtle Monitor

Displays the values of all of the variables in a particular turtle.
'You can can also edit the values of the turtle's variables and
issue commands to the turtle. (You can also open a turtle
monitor via the View; see the View section below.)

Patch Monitor

Displays the values of all of the variables in a particular patch.
'You can can also edit the values of the patch's variables and
issue commands to the patch. (You can also open a patch
monitor via the View; see the View section below.)

Hide/Show Command
Center

Makes the command center visible or invisible. (Note that the
command center can also be shown or hidden, or resized, with
the mouse.)

3D View

Opens the 3D view. See the_View section for more information.

64

Color Swatches

Interface Guide

NetLogo 3.1.1 User Manual

Opens the Color Swatches. See the_Color Section of the
Programming Guide for details.

Shapes Editor Draw turtle shapes. See the_Shapes Editor Guide for more
information.

BehaviorSpace Runs the model over and over with different settings. See the
BehaviorSpace Guide for more information.

System Dynamics Opens the System Dynamics Modeler. See the_System

Modeler Dynamics Modeler Guide for more details.

HubNet Control Center [Disabled if no HubNet activity is open. See the_HubNet Guide
for more information.

Zoom
Larger Increase the overall screen size of the model. Useful on large
monitors or when using a projector in front of a group.
Normal Size Reset the screen size of the model to the normal size.
Smaller Decrease the overall screen size of the model.
Tabs This menu offers keyboard shortcuts for each of the tabs. (On
Macs, it's Command 1 through Command 3. On Windows, it's
Control 1 through Control 3.)
Help
About NetLogo Information on the current NetLogo version the user is running.
(On Macs, this menu item is on the NetLogo menu instead.)
User Manual Opens this manual in a web browser.
Tabs

At the top of NetLogo's main window are three tabs labeled "Interface", "Information" and
"Procedures" . Only one tab at a time can be visible, but you can switch between them by clicking
on the tabs at the top of the window.

{ Interface | Information Procedures

- T == 1) : :
Edit| | @ Delet [Bae Button| | =28 Slider | | T8 switch| E551 Chooser | | # Monitor | \[" Plot| | B=J Outputt [f;’.' Text1
L | | | [Il | 1 J

Right below the row of tabs is a toolbar containing a row of buttons. The buttons available vary from
tab to tab.

Interface Tab

The Interface tab is where you watch your model run. It also has tools you can use to inspect and
alter what's going on inside the model.

When you first open NetLogo, the Interface tab is empty except for the View, where the turtles and
patches appear, and the Command Center, which allows you to issue NetLogo commands.

Working with Interface Elements

The toolbar on the Interface tab contains buttons that let you edit, delete, and create items in the
Interface tab (such as buttons and sliders).

Interface Guide 65

NetLogo 3.1.1 User Manual

~— == — 1T I 11 1 1 1
Edit| | @ Delet I | Tabc Button | | Ses Slideré ‘ﬁ&". switch | | 5 Chooser! | %<5 Monitor | | "=~ Plot]| } E=] output| l:ﬂ" Text |

The buttons in the toolbar are described below.

Selecting: To select an interface element, drag a rectangle around it with your mouse. A gray
border will appear around the element to indicate that it is selected.

Selecting Multiple Items: You can select multiple interface elements at the same time by including
them in the rectangle you drag. If multiple elements are selected, one of them is the "key" item,
which means that if you use the "Edit" or "Delete" buttons on the Interface Toolbar, only the key
item is affected. The key item is indicated by a darker gray border than the other items.

Unselecting: To unselect all interface elements, click the mouse on the white background of the
Interface tab. To unselect an individual element, control-click (Macintosh) or right—click (other
systems) the element and choose "Unselect" from the popup menu.

Editing: To change the characteristics of an interface element, select the element, then press the
"Edit" button on the Interface Toolbar. You may also double click the element once it is selected. A
third way to edit an element is to control—click (Macintosh) or right—click (other systems) it and
choose "Edit" from the popup menu. If you use this last method, it is not necessary to select the
element first.

Moving: Select the interface element, then drag it with your mouse to its new location. If you hold
down the shift key while dragging, the element will move only straight up and down or straight left
and right.

Resizing: Select the interface element, then drag the black "handles" in the selection border.
Deleting: Select the element or elements you want to delete, then press the "Delete" button on the
Interface Toolbar. You may also delete an element by control—-clicking (Macintosh) or right—clicking
(other systems) it and choosing "Delete" from the popup menu. If you use this latter method, it is not
necessary to select the element first.

To learn more about the different kinds of interface elements, refer to the chart below.

Chart: Interface Toolbar

Icon &

Name Description

*.c Button| |Buttons can be either once—only buttons or forever buttons. When you click on a
once button, it executes its instructions once. The forever button executes the
instructions over and over, until you click on the button again to stop the action. If you
have assigned an action key to the button, pressing the corresponding keyboard key
will act just like a button press when the button is in focus. Buttons with action keys
have a letter in the upper right corner of the button to show what the action key is. If
the input cursor is in another interface element such as the Command Center,
pressing the action key won't trigger the button. The letter in the upper right hand
corner of the button will be dimmed in this situation. To enable action keys, click in
the white background of the Interface tab.

66 Interface Guide

NetLogo 3.1.1 User Manual

==k q|ider| [Sliders are global variables, which are accessible by all agents. They are used in
models as a quick way to change a variable without having to recode the procedure
every time. Instead, the user moves the slider to a value and observes what happens
in the model.

switch| | Switches are a visual representation for a true/false variable. The user is asked to set
the variable to either on (true) or off (false) by flipping the switch.

=0
g2

chooser | | Choosers let the user choose a value for a global variable from a list of choices,
presented in a drop down menu.

Monitor| [Monitors display the value of any expression. The expression could be a variable, a
complex expression, or a call to a reporter. Monitors automatically update several
times per second.

* plot| |Plots are real-time graphs of data the model is generating.

output| | The output area is a scrolling area of text which can be used to create a log of activity
in the model. A model may only have one output area.

Al

= Text| |Text boxes lets you add informative text labels to the Interface tab. The contents of
text boxes do not change as the model runs.

The 2D and 3D Views

The large black square in the Interface tab is the 2D view. It's a visual representation of the NetLogo
world of turtles and patches. Initially it's all black because the patches are black and there are no
turtles yet. You can open the 3D View, another visual representation of the world, by clicking on the
"3D" button in the View Control Strip.

>0 edi..|

There are a number of settings associated with the Views. There are a few ways of changing the
settings: by using the control strip along the top edge of the View, or by editing the 2D View, as
described in the "Working With Interface Elements"” section above, or pressing the "Edit..." button in
the control strip.

/R |

The 3D View has a similar control strip but it looks slightly different and as you may notice a few of
the controls are missing. However, the controls that are present work exactly the same as the 2D
View Control Strip.

speed: O >

The controls in the control strip work as follows:

» The three sets of black arrows let you change the size of the world. When the origin is
centered the world will grow in increments of two, adding one to the maximum and
subtracting one from the minimum. If one of the edges is set to 0 the world will grow by one
in the other direction to keep the origin along the edge. If the origin is at a custom location
the black arrows will be disabled.

* The slider lets you control how fast the model runs —— this is valuable since some models
run so fast that it's hard to see what's going on.

Interface Guide 67

NetLogo 3.1.1 User Manual

» The button with the arrowhead lets you turn turtle "shapes" on and off. If shapes are off,
turtles appear as colored squares, instead of having special shapes. The squares are less
work for the computer to draw, so turning shapes off makes models run faster.

» The on-off switch lets you temporarily "freeze" the display. The model keeps running, but
the contents of the view don't change until you unfreeze it by flipping the switch again. Most
models run much faster when the view is frozen.

» The 3D button switches to the 3D View (see below).

Here are the settings for the View (accessible by editing the View, or by pressing the "Edit..." button
in the control strip):

® OO World & View
World

Location of origin: | Center |3

17

minimum x coordinate for patches

max-pxcor |17

maximum x coordinate for patches
17

minimum y coordinate for patches

max-pycor 17 Torus: 35 x 35
maximum y coordinate for patches M World wraps horizontally
@World wraps vertically

View

Patch size (pixels) 12.0

Font size (of turtle and patch labels) 10

@ Turtle shapes

™ Smooth edges (slower)
only affects 3D view

' Cancel . l Apply ' (OK)

Notice that the settings are broken up into two groups. There are World setting and View settings.
World settings affect the properties of the world that the turtles live in (changing them may require
resetting the world). View settings only affect the appearance of view, changing them will not affect
the outcome of the model.

The world settings allow you to define the boundaries and topology of the world. At the top of the left
side of the world panel you can choose a location for the origin of the world either "Center",
"Corner", "Edge", or "Custom". By default the world has a center configuration where (0,0) is at the
center of the world and the user defines the number of patches from the center to the right and left
boundaries and the number of patches from the center to the top and bottom boundaries. For
Example: If you set Max—Pxcor = 10 Min—Pxcor will automatically be set to —10 thus there are 10
patches to the left of the origin and 10 patches to the right of patch 0 O.

68 Interface Guide

NetLogo 3.1.1 User Manual

A Corner configuration allows the user to define the location of the origin as one of the corners of
the world, upper left, upper right, lower left, or lower right. Then you define the far boundary in the x
and y directions. For example if you choose to put the origin in the lower left corner of the world you
define the right and top (positive) boundaries.

Edge mode allows you to place the origin along one of the edges (x or y) then define the far
boundary in that direction and both boundaries in the other. For example if you select edge mode
along the bottom of the world, you must also define the top boundary, as well as the left and the
right.

Finally, Custom mode allows the user to place the origin at any location in the world, though patch 0
0 must still exist in the world.

As you change the settings you will notice that the changes you make are reflected in the preview
on the right side of the panel which shows the origin and the boundaries. The width and height of
the world are displayed below the preview.

Also below the preview there are two checkboxes, the world wrap settings. These allow you to
control the topology of the world. Notice when you click the check boxes the preview indicates
which directions allow wrapping, and the name of the topology is displayed next to the world
dimensions. See the_Topology Section of the Programming Guide for more information.

The view settings allow you to customize the look of the view without changing the world. Changing
view settings will never force a world reset. To change the size of the 2D View adjust the "Patch
Size" setting, measured in pixels. This does not change the number of patches, only how large the
patches appear in the 2D View. (Note that the patch size does not affect the 3D View, as you can
simply make the 3D View larger by making the window larger.)

The "Turtle Shapes" checkbox performs the same function as the shapes button in the control strip,
discussed above.

The "Smooth edges" checkbox controls the use of anti—aliasing in the 3D view only. It will make the
lines appear less jagged but it will slow down the model.

Turtle and patch monitors are easily available through the View, just control—click (Macintosh) or
right—click (other systems) on the turtle or patch you want to inspect, and choose "inspect turtle ..."
or "inspect patch ..." from the popup menu. You can also watch, follow or ride a turtle by selecting
the appropriate item in the turtle sub—menu. (Turtle and patch monitors can also be opened from the
Tools menu or by using the inspect command.)

Some NetLogo models let you interact with the turtles and patches with your mouse by clicking and
dragging in the View.

Manipulating the 3D View

At the bottom of the window there are buttons to move the observer, or change the perspective from
which you are looking at the world.

ﬁ Zoom I Move | Interact‘ Reset Perspective‘ ’ Full Screen

Interface Guide 69

NetLogo 3.1.1 User Manual

A blue cross appears at the current focus point as you are adjusting these settings. The little blue
triangle will always point up the positive y—axis, so you can orient yourself in case you get lost. It's
easy to do!

To look at the world from a different angle, press the "rotate" button click and drag the mouse up,
down, left, or right. The observer will continue to face the same point as before (where the blue
cross is) but its position in the relation to the xy—plane will change.

To move closer or farther away from the world or the agent you are watching, following or riding,
press the "zoom" button and drag up and down along the 3D View. (Note when you are in follow or
ride mode zooming will switch you between ride and follow, since ride is just a special case of follow
where the distance at which you are following is 0.)

To change the position of the observer without changing the direction it is facing select the "move”
button and drag the mouse up, down, left, and right inside the 3D View while holding down the
mouse button.

To allow the mouse position and state to be passed to the model select the "interact" button and it
will function just as the mouse does in the 2D view.

To return the observer and focus point to their default positions press the "Reset Perspective"
button (or use the reset—perspective command) .

Fullscreen Mode
To enter fullscreen mode, press the "Full Screen" button, to exit fullscreen mode, press the Esc key.

Note: Fullscreen mode doesn't work on some computers. It depends on what kind of graphics card
you have. See the_System Requirements for details.

3D Shapes

Some shapes have true 3D counterparts (a 3D circle is actually a sphere) in the 3D view so they
are automatically mapped to that shape.

Shape name |3D shape
default 3D turtle shape
circle sphere

dot small sphere
square cube

triangle cone

line 3D line
cylinder 3D cylinder

70 Interface Guide

NetLogo 3.1.1 User Manual

line—half 3D line-half
car 3D car

All other shapes are interpreted from their 2D shapes. If a shape is a rotatable shape it is assumed
to be a top view and it is extruded as if through a cookie cutter and oriented parallel to the xy—plane,
as in Ants.

If a shape is non-rotatable it is assumed to be a side view so it is drawn always facing the observer
(and with no thickness), as in Wolf Sheep Predation.

Command Center

The Command Center allows you to issue commands directly, without adding them to the model's
procedures. (Commands are instructions you give to the agents in your model.) This is useful for
inspecting and manipulating agents on the fly.

(Tutorial #2: Commands is an introduction to using commands in the Command Center.)

Let's take a look at the design of the Command Center.

Interface Guide 71

NetLogo 3.1.1 User Manual

Command Center 2| Clear |
turtles> set color red

patches> set pcolor white

observer> ask turtle 10 [set color blue]

observer> ask turtle 1 [set color blue]

observer> crt 10 N

The smaller text box, below the large box, is where you type a command. After typing it press the
Return or Enter key to run it.

To the left of where you type is a popup menu that initially says "observer>". You can choose either
observer, turtles, or patches, to specify which agents run the command you type.

Tip: a quicker way to change between observer, turtles, and patches is to use the tab key on your
keyboard.

Accessing previous commands

After you type a command, it appears in the large scrolling box above the command line. You can
use Copy on the Edit menu in this area to copy commands and then paste them elsewhere, such as
the Procedures tab.

You can also access previous commands using the history popup menu, which is the small
downward pointing triangle to the right of where you type commands. Click on the triangle and a

menu of previously typed commands appears, so you can pick one to use again.

Tip: a quicker way to access previous commands is with the up and down arrow keys on your
keyboard.

Clearing

To clear the large scrolling area containing previous commands and output, click "clear" in the top
right corner.

To clear the history popup menu, choose "Clear History" on that menu.
Arranging

You can hide and show the command center using the Hide Command Center and Show Command
Center items on the Tools menu.

To resize the command center, drag the bar that separates it from the model interface. Or, click one
of the little arrows on the right end of the bar to make the command center either very big or hidden
altogether.

To switch between a vertical command center and a horizontal one, click the button with the
double—headed arrow, just to the left of "Clear".

72 Interface Guide

NetLogo 3.1.1 User Manual
Plots
To show or hide a plot's pens legend, click on the word "Pens" in the upper right corner of a plot.
If you move the mouse over the white area of a plot, the x and y coordinates of the mouse location
will appear. (Note that the mouse location might not correspond exactly to any actual data points in
the plot. If you need to know the exact coordinates of plotted points, use the Export Plot menu item

and inspect the resulting file in another program.)

When you create a plot, as with all widgets, the edit dialog automatically appears.

e OO0 Plot

Name | plot 1

X axis label X min 0.0 X'max 10.0

Y axis label Y min 0.0 Y max 10.0

@Autoplot?

Plot Pens Choose Pen to Edit defTﬂ (Tame;i Delete (" Create)
Color " black 4] Mode [Line |3] Interval 1.0 ™ Show in Legend
l\ Custom Color... /l

.\’ Cancel /' ('BIG)

Many of the fields are fairly self explanatory, the name of the plot, labels for the x and y axes, and
ranges for the axes.

If Autoplot? is checked the x and y changes will automatically readjust as points are added to the
plot if they are outside the current range.

In the plot pens section of the dialog you can create and customize different pens in this plot. You
must always have a least one pen in every plot. You start out with one named "default" you
probably want to rename it something that is meaningful in the model.

All the items in the box below the pen name are settings relevant to that particular pen.

« Set the color to one of the NetLogo base hues or a custom color using the color swatches.

* Mode allows you to change the appearance of the plot pen, line, bar (like a bar chart), or
point (like line except the points are not connected)

« Interval is the amount by which x advances every time you use plot y

« If the Show in Legend checkbox is checked the selected pen will be a part of the legend in
the upper right hand corner of the plot (which can be revealed by clicking on the word "Pens"
on the plot itself).

For more detailed information on how each of these features works you can see the_Plotting Section
of the Programming Guide.

Interface Guide 73

NetLogo 3.1.1 User Manual
Procedures Tab

This tab is the workspace where the code for the model is stored. Commands you only want to use

immediately go in the Command Center; commands you want to save and use later, over and over
again, are found in the Procedures tab.

! Interface Information Procedures}

o B BT
Find... Check

blobals [ticks]

breed [sheep a-sheep]
breed [wolves wolf]
turtles-own [energy]

sheep-own [grabbed?] ;3 used to prevent two wolves from eating the same sheep
patches-own [countdown]

to setup
ca
set ticks @
ask patches [set pcolor green]
if grass? [
;3 1ndicates whether the grass switch is on

;3 1f it 1is true, then grass grows and the sheep eat it
;3 1f 1t false, then the sheep don't need to eat
ask patches [

set countdown random grass-regrowth-time ;; initialize grass grow clocks randomly
if (random 2) = @ ;;half the patches start out with grass

[set pcolor brown]
1

To determine if the code has any errors, you may press the "Check" button. If there are any syntax
errors, the Procedures tab will turn red and the code that contains the error will be highlighted and a
comment will appear in the top box. Switching tabs also causes the code to be checked and any
errors will be shown, so if you switch tabs, pressing the Check button first isn't necessary.

74 Interface Guide

NetLogo 3.1.1 User Manual

{ .
. Interface Information Procedures}

{ﬂFind...l I lvcheckl I

™ Nothing named BALCK has been defined

set-default-shape wolves "wolf"
create-custom-wolves initial-number-wolves ;; create the wolves, then initialize their

C

set color balck

set size 1.5 ;; easier to see

set energy random (2 * wolf-gain-from-food)

setxy random-float screen-size-x
random-float screen-size-y

]
display-labels

do-plot
end

To find a fragment of code in the procedures, click on the "Find" button in the Procedures Toolbar
and the Find dialog will appear.

® 00 Find

Find: sheep

Replace with: wolves

@ Ignore case @ Wrap around

(Replace All) (Replace) (Replace & Find) (Previous) (Next)

You may enter either a word or phrase to find or a word or phrase to find and one to replace it with.
The "Ignore case" checkbox controls whether the capitalization must be the same to indicate a
match. If the "Wrap around" checkbox is checked the entire Procedures tab will be checked for the
phrase, starting at the cursor position, when it reaches the end it will return to the top, otherwise
only the area from the cursor position to the end of the Procedures tab will be searched. The "Next"
and "Previous" buttons will move down and up to find another occurrence of the search phrase.
"Replace” changes the currently selected phrase with the replace phrase and "Replace &Find"
changes the selected phrase and moves to the next occurrence. "Replace all" will change all
instances of the the find phrase in the search area with the replace phrase.

To find a particular procedure definition in your code, use the "Procedures” popup menu in the
Procedures Toolbar. The menu lists all procedures in alphabetical order.

The "Shift Left", "Shift Right", "Comment", and "Uncomment" items on the Edit menu are used in the

procedures tab to change the indentation level of your code or add and remove semicolons, which
mark comments, from sections of code.

Interface Guide 75

NetLogo 3.1.1 User Manual

For more information about writing procedures, read_Tutorial #3: Procedures and the_Programming
Guide.

Information Tab

The Information tab provides an introduction to the model and an explanation of how to use it,
things to explore, possible extensions, and NetLogo features. It is very helpful when you're first
exploring a model.

" Interface - Information | Procedures '

|£ Find...|| g Edit|

WHAT IS IT?

This model explores the stability of predator-prey ecosystems. (The construction of this
model is described in two papers by Wilensky & Reisman referenced below.) Such systems
are called unstable when they tend to result in extinction for one or more species involved. In
contrast, systems are stable when they tend to maintain themselves over time, despite
fluctuations in population sizes. There are two main variations to this model.

In the first variation, wolves and sheep wonder randomly around the landscape, while the
wolves look for sheep to prey on. Each step costs the wolves energy, and they must eat
sheep in order to replenish their energy - when they run out of energy they die. To allow the
population to continue, each wolf or sheep has a fixed probability of reproducing at each time
step. This variation produces interesting population dynamics, but is ultimately unstable.

The second variation includes grass (green) in addition to wolves and sheep. The behavior
of the wolves is identical to the first variation, however this time the sheep must eat grass in
order to maintain their energy - when they run out of energy they die. Once grass is eaten it
will only regrow after a fixed amount of time. This variation is more complex than the first, but
it is generally stable.

We recommend reading the Information tab before starting the model. The Information tab explains
what principle is being modeled and how the model was created. This display of the Information tab
is not editable. To edit the content of the Info tab click the "Edit" button or double click on a word
which will also scroll you to the location you clicked on and highlight the word.

" Interface -~ Information | Procedures |

2. | IR

WHAT IS IT?

This model explores the stability of predator-prey ecosystems. (The construction of
this model is described in two papers by Wilensky & Reisman referenced below.) Such
systems are called unstable when they tend to result in extinction for one or more
species involved. In contrast, systems are stable when they tend to maintain
themselves over time, despite fluctuations in population sizes. There are two main
variations to this model.

76 Interface Guide

You can edit the text in this view as in any text editor. However, a few different forms will be

NetLogo 3.1.1 User Manual

displayed specially when you switch out of the edit view.

Information Tab Markup

and no lower case
letters become
section headers.

Description Edit Mode View Mode
Lines that come after
blank lines and
contain capital letters WHAT IS IT WHAT IS IT

Any line that has only
dashes is omitted.

Anything beginning
with "http://" becomes
a clickable hyperlink.

http://ccl.northwestern.edu

http://ccl.northwestern.edu

E-mail addresses
become clickable
"mailto:" links.

bugs@ccl.northwestern.edu

bugs@ccl.northwestern.edu

Lines that begin with
the pipe '|' (shift +
backslash \')
become monospaced
text. This is useful for
diagrams and
complicated
formulas, among
other things.

| this is preformatted text
|you can put spacesin it

this is preformatted text
you can put spacesin it

To return to the normal view, click the edit button.

Interface Guide

77

http://ccl.northwesten.edu
mailto:bugs@ccl.northwestern.edu

78

NetLogo 3.1.1 User Manual

Interface Guide

Programming Guide

The following material explains some important features of programming in NetLogo.

The Code Example models mentioned throughout can be found in the Code Examples section of
the Models Library.

* Agents
* Procedures

 Variables

» Colors

* Ask

* Agentsets

» Breeds

» Synchronization

e Buttons

* Lists

* Math

* Random Numbers

e Turtle Shapes
* Plotting
« Strings
¢ Qutput
* File I/O

* Movies

« Perspective
» Drawing

» Topology

* Links

« Tie

Agents

The NetLogo world is made up of agents. Agents are beings that can follow instructions. Each agent
can carry out its own activity, all simultaneously.

In NetLogo, there are three types of agents: turtles, patches, and the observer. Turtles are agents
that move around in the world. The world is two dimensional and is divided up into a grid of patches.
Each patch is a square piece of "ground" over which turtles can move. The observer doesn't have a
location —— you can imagine it as looking out over the world of turtles and patches.

When NetLogo starts up, there are no turtles yet. The observer can make new turtles. Patches can
make new turtles too. (Patches can't move, but otherwise they're just as "alive" as turtles and the
observer are.)

Patches have coordinates. The patch at coordinates (0, 0) is called the origin and the coordinates of
the other patches are the horizontal and vertical distances from this one. We call the patch's
coordinates pxcor and pycor. Just like in the standard mathematical coordinate plane, pxcor
increases as you move to the right and pycor increases as you move up.

Programming Guide 79

NetLogo 3.1.1 User Manual

The total number of patches is determined by the settings min—pxcor, max—pxcor, min—pycor
and max—pycor. When NetLogo starts up, min—pxcor, max—pxcor, min—pycor and max—pycor
are -17, 17, -17, and 17 respectively. This means that pxcor and pycor both range from -17 to
17, so there are 35 times 35, or 1225 patches total. (You can change the number of patches by
editing NetLogo's view.)

Turtles have coordinates too: xcor and ycor. A patch's coordinates are always integers, but a
turtle's coordinates can have decimals. This means that a turtle can be positioned at any point
within its patch; it doesn't have to be in the center of the patch.

The world of patches can have different shapes. By default the world is a torus which means it isn't
bounded, but "wraps" —— so when a turtle moves past the edge of the world, it disappears and
reappears on the opposite edge and every patch has the same number of "neighbor" patches —- if
you're a patch on the edge of the world, some of your "neighbors" are on the opposite edge.
However, you can change the shape of the world by adjusting the wrap settings by editing the view.
If wrapping is not allowed in a given direction then in that direction (x or y) the world is bounded.
Patches along that boundary will have fewer than 8 neighbors and turtles will not move beyond the
edge of the world. See the_Topology section for more information.

Procedures

In NetLogo, commands and reporters tell agents what to do. A command is an action for an agent
to carry out. A reporter computes a result and report it.

Most commands begin with verbs ("create", "die", "jump", "inspect", "
are nouns or noun phrases.

clear"), while most reporters

Commands and reporters built into NetLogo are called primitives. The Primitives Dictionary has a

complete list of built—=in commands and reporters.

Commands and reporters you define yourself are called procedures. Each procedure has a name,
preceded by the keyword to. The keyword end marks the end of the commands in the procedure.

Once you define a procedure, you can use it elsewhere in your program.

Many commands and reporters take inputs —— values that the command or reporter uses in
carrying out its actions.

Examples: Here are two command procedures:

to setup
ca ;; clear the world
crt 10 :; make 10 new turtles
end
to go
ask turtles
[fd 1 ;; all turtles move forward one step
rt random 10 ;; ...and turn a random amount
It random 10]
end

80 Programming Guide

NetLogo 3.1.1 User Manual

Note the use of semicolons to add "comments" to the program. Comments make your program
easier to read and understand.

In this program,

* setup and go are user—defined commands.

« ca (“clear all"), crt ("create turtles"), ask, It ("left turn™), and rt ("right turn") are all
primitive commands.

« random and turtles are primitive reporters. random takes a single number as an input
and reports a random integer that is less than the input (in this case, between 0 and 9).
turtles reports the agentset consisting of all the turtles. (We'll explain about agentsets
later.)

setup and go can be called by other procedures or by buttons. Many NetLogo models have a once
button that calls a procedure called setup, and a forever button that calls a procedure called go.

In NetLogo, you must specify which agents —- turtles, patches, or the observer —— are to run each
command. (If you don't specify, the code is run by the observer.) In the code above, the observer
uses ask to make the set of all turtles run the commands between the square brackets.

ca and crt can only be run by the observer. fd, on the other hand, can only be run by turtles.
Some other commands and reporters, such as set, can be run by different agent types.

Here are some more advanced features you can take advantage of when defining your own
procedures.

Procedures with inputs

Your own procedures can take inputs, just like primitives do. To create a procedure that accepts
inputs, include a list of input names in square brackets after the procedure name. For example:

to draw—polygon [num-sides size]
pd
repeat num-sides
[fd size
rt (360 / num-sides)]
end

Elsewhere in the program, you could ask turtles to each draw an octagon with a side length equal to
its ID-number:

ask turtles [draw—polygon 8 who]
Reporter procedures

Just like you can define your own commands, you can define your own reporters. You must do two
special things. First, use to—report instead of to to begin your procedure. Then, in the body of
the procedure, use report to report the value you want to report.

to—report absolute-value [number]
ifelse number >=0
[report number]
[report O — number]

Programming Guide 81

NetLogo 3.1.1 User Manual

end

Variables

Variables are places to store values (such as numbers). A variable can be a global variable, a turtle
variable, or a patch variable.

If a variable is a global variable, there is only one value for the variable, and every agent can access
it. But each turtle has its own value for every turtle variable, and each patch has its own value for
every patch variable.

Some variables are built into NetLogo. For example, all turtles have a color variable, and all
patches have a pcolor variable. (The patch variable begins with "p" so it doesn't get confused with
the turtle variable.) If you set the variable, the turtle or patch changes color. (See next section for
details.)

Other built-in turtle variables including xcor, ycor, and heading. Other built-in patch variables
include pxcor and pycor. (There is a complete list here.)

You can also define your own variables. You can make a global variable by adding a switch or a
slider to your model, or by using the globals keyword at the beginning of your code, like this:

globals [clock]

You can also define new turtle and patch variables using the turtles—own and patches—own
keywords, like this:

turtles—own [energy speed]
patches—own [friction]

These variables can then be used freely in your model. Use the set command to set them. (If you
don't set them, they'll start out storing a value of zero.)

Global variables can by read and set at any time by any agent. As well, a turtle can read and set
patch variables of the patch it is standing on. For example, this code:

ask turtles [set pcolor red]

causes every turtle to make the patch it is standing on red. (Because patch variables are shared by
turtles in this way, you can't have a turtle variable and a patch variable with the same name.)

In other situations where you want an agent to read or set a different agent's variable, you put —of
after the variable name and then specify which agent you mean. Examples:

set color-of turtle 5 red
;; turtle with ID number 5 turns red
set pcolor—of patch 2 3 green
;; patch with pxcor of 2 and pycor of 3 turns green
ask turtles [set pcolor-of patch—-at 1 0 blue]
;; every turtle turns the patch to its east blue
ask patches with [any? turtles—here]
[set color—of one-of turtles—here yellow]
;; on every patch, a random turtle turns yellow

82 Programming Guide

NetLogo 3.1.1 User Manual

Local variables

A local variable is defined and used only in the context of a particular procedure or part of a
procedure. To create a local variable, use the let command. You can use this command

anywhere. If you use it at the top of a procedure, the variable will exist throughout the procedure. If
you use it inside a set of square brackets, for example inside an "ask", then it will exist only inside
those brackets.

to swap-—colors [turtlel turtle2]
let temp color—of turtlel
set (color—of turtlel) (color-of turtle2)
set (color—of turtle2) temp

end

Colors

NetLogo represents colors as numbers in the range 0 to 140, with the exception of 140 itself. Below
is a chart showing the range of colors you can use in NetLogo.

black = 0 white = 9.9

gray =5 8 9 9.9
red = 15 18 19 199
orange = 25 28 29 29.9
brown = 35 38 39 399
yellow = 45 48 49 499
green = 55 58 59 59.9
lime = 65 68 69 69.9
turquoise = 75 78 79 79.9
cyan = 85 88 89 89.9
sky = 95 98 99 99.9
blue = 105 108 109 109.9
violet = 115 118 119 1199

magenta = 125 128 129 1299

pink = 135 138 139 1399

The chart shows that:
« Some of the colors have names. (You can use these names in your code.)
» Every named color except black and white has a number ending in 5.

« On either side of each named color are darker and lighter shades of the color.
* 0 is pure black. 9.9 is pure white.

Programming Guide 83

NetLogo 3.1.1 User Manual

« 10, 20, and so on are all so dark they appear black. 19.9, 29.9 and so on are all so light they
appear white.

Code Example: The color chart was made in NetLogo with the Color Chart Example
model.

You can also view a similar chart, and experiment with the colors, by opening the Color Swatches
from the Tools Menu.

e 06 Color Swatches

—- whita =9.9999 A Praview

gray=5

rad=15 19 19 19,9948

orange =25 2 29 299999

brown =35 k) 39 39.9999

yellow = 45 4 49 499998 A

graan =55 59 99999

lime =65 (0] £9.9999

furquoise =75 7 7% 799949

cyan =85 a a3 89.9999 A
sky=95

blue =105

ga 99 99.9999

108 109 109.9999

violet=115 118 118 119.9900

128 128 128.9998
128 128 10000 [

(Copy selected color)lblack g Numbers I@ 10 0.50 0.1‘ Increment ~

magenta = 125

pink=135

When you click on any one of the color swatches (or the color buttons) that color will be displayed
against all of the other standard colors along the right edge of the dialog and black and white along
the top. In the bottom left corner the value of the currently selected color is displayed so you can
copy the color and easily insert it into your code. In the bottom right corner there are three
increment options, 1, 0.5, and 0.1. These numbers indicate the difference between two adjacent
swatches. When the increment is 1 there are 10 different shades in each row so when the
increment is 0.1 there are 100 different shades in each row.

Note: If you use a number outside the 0 to 140 range, NetLogo will repeatedly add or subtract 140
from the number until it is in the 0 to 140 range. For example, 25 is orange, so 165, 305, 445, and
SO on are orange too, and so are —115, —255, —395, etc. This calculation is done automatically
whenever you set the turtle variable color or the patch variable pcolor. Should you need to
perform this calculation in some other context, use the wrap—color primitive.

If you want a color that's not on the chart, more can be found between the integers. For example,

26.5 is a shade of orange halfway between 26 and 27. This doesn't mean you can make any color
in NetLogo; the NetLogo color space is only a subset of all possible colors. A fixed set of discrete

84 Programming Guide

NetLogo 3.1.1 User Manual

hues. Starting from one of those hues, you can either decrease its brightness (darken it) or
decrease its saturation (lighten it), but you cannot decrease both brightness and saturation. Also, for
display color values are rounded to the nearest 0.1, so for example there's no visible difference
between 26.5 and 26.52.

There are a few primitives that are helpful for working with color shades. The scale—color
primitive is useful for converting numeric data into colors. And shade—of? will tell you if two colors
are "shades" of the same basic hue. For example, shade-of? orange 27 is true, because 27 is

a lighter shade of orange.

Code Example: Scale—color Example shows you how to use the scale—color
reporter.

For many models, the NetLogo color system is a convenient way of expressing colors. But
sometimes you'd like to be able to specify colors the conventional way, by specifying HSB
(hue/saturation/brightness) or RGB (red/green/blue) values. The hsb and rgb primitives let you do
this. extract—hsb and extract—hsb let you convert colors in the other direction.

Since the NetLogo color space doesn't include all hues, hsb and rgb can't always give you the
exact color you ask for, but they try to come as close as possible.

Code Example: You can use the HSB and RGB Example model to experiment with
the HSB and RGB color systems.

Ask

NetLogo uses the ask command to specify commands that are to be run by turtles or patches. All
code to be run by turtles must be located in a turtle "context". You can establish a turtle context in
any of three ways:

« In a button, by choosing "Turtles" from the popup menu. Any code you put in the button will
be run by all turtles.

« In the Command Center, by choosing "Turtles" from the popup menu. Any commands you
enter will be run by all the turtles.

By using ask turtles.

The same goes for patches and the observer, except that code to be run by the observer must not
be inside any ask.

Here's an example of the use of ask syntax in a NetLogo procedure:

to setup
ca
crt 100 ;; create 100 turtles
ask turtles
[set color red ;; turn them red
rt random-float 360 ;; give them random headings
fd 50] ;; spread them around

Programming Guide 85

NetLogo 3.1.1 User Manual

ask patches
[if (pxcor > 0) ;; patches on the right side
[set pcolor green]] ;; of the view turn green
end

The models in the Models Library are full of other examples. A good place to start looking is in the
Code Examples section.

Usually, the observer uses ask to ask all turtles or all patches to run commands. You can also use
ask to have an individual turtle or patch run commands. The reporters turtle, patch, and
patch—at are useful for this technique. For example:

to setup

ca

crt3 ;; make 3 turtles

ask turtle O ;; tell the first one...
[fd1] ;1 ...to go forward

ask turtle 1 ;; tell the second one...
[set color green] ;; ...to become green

ask turtle 2 ;; tell the third one...
[rt90] ;; ...to turn right

ask patch 2 -2 ;; ask the patch at (2,-2)
[set pcolor blue] ;; ...to become blue

ask turtle O ;; ask the first turtle

[ask patch-at 1 0 ;; ...to ask patch to the east
[set pcolorred] ;; ...to become red
end

Every turtle created has an ID number. The first turtle created has ID 0, the second turtle ID 1, and
so forth. The turtle primitive reporter takes an ID number as an input, and reports the turtle with
that ID number. The patch primitive reporter takes values for pxcor and pycor and reports the
patch with those coordinates. And the patch—at primitive reporter takes offsets: distances, in the x
and y directions, from the first agent. In the example above, the turtle with ID number O is asked to
get the patch east (and no patches north) of itself.

You can also select a subset of turtles, or a subset of patches, and ask them to do something. This
involves a concept called "agentsets". The next section explains this concept in detail.

Agentsets

An agentset is exactly what its name implies, a set of agents. An agentset can contain either turtles
or patches, but not both at once.

An agentset is not in any particular order. In fact, its always in a random order. And every time you
use it, the agentset is in a different random order. This helps you keep your model from treating any
particular turtles or patches differently from any others (unless you want them to be). Since the
order is random every time, no one agent always gets to go first.

You've seen the turtles primitive, which reports the agentset of all turtles, and the patches
primitive, which reports the agentset of all patches.

But what's powerful about the agentset concept is that you can construct agentsets that contain only
some turtles or some patches. For example, all the red turtles, or the patches with pxcor evenly
divisible by five, or the turtles in the first quadrant that are on a green patch. These agentsets can

86 Programming Guide

NetLogo 3.1.1 User Manual

then be used by ask or by various reporters that take agentsets as inputs.

One way is to use turtles—here or turtles—at, to make an agentset containing only the turtles

on my patch, or only the turtles on some other particular patch. There's also turtles—on so you
can get the set of turtles standing on a given patch or set of patches, or the set of turtles standing
on the same patch as a given turtle or set of turtles.

Here are some more examples of how to make agentsets:

;; all red turtles:
turtles with [color = red]
;; all red turtles on my patch
turtles—here with [color = red]
;; patches on right side of view
patches with [pxcor > 0]
;; all turtles less than 3 patches away
turtles in—radius 3
;; the four patches to the east, north, west, and south
patches at—points [[1 0] [0 1] [-1 0] [0 —-1]]
;; shorthand for those four patches
neighbors4
;; turtles in the first quadrant that are on a green patch
turtles with [(xcor > 0) and (ycor > 0)
and (pcolor = green)]
;; turtles standing on my neighboring four patches
turtles—on neighbors4

Once you have created an agentset, here are some simple things you can do:

» Use ask to make the agents in the agentset do something
» Use any? to see if the agentset is empty
» Use count to find out exactly how many agents are in the set

And here are some more complex things you can do:

 Pick a random agent from the set using one—of. For example, we can make a randomly
chosen turtle turn green:

set color-of one—of turtles green

Or tell a randomly chosen patch to sprout a new turtle:

ask one-of patches [sprout 1 []]
» Use the max—one—of or min—one—of reporters to find out which agent is the most or least
along some scale. For example, to remove the richest turtle, you could say

ask max—one-of turtles [sum assets] [die]

» Make a histogram of the agentset using the histogram—from command.

» Use values—from to make a list of values, one for each agent in the agentset. Then use
one of NetLogo's list primitives to do something with the list. (See the "Lists" section_below.)
For example, to find out how rich the richest turtle is, you could say

show max values—from turtles [sum assets]
 Use turtles—from and patches—from reporters to make new agentsets by gathering
together the results reported by other agents.

Programming Guide 87

NetLogo 3.1.1 User Manual

This only scratches the surface —— see the Models Library for many more examples, and consult the
Primitives Guide and Primitives Dictionary for more information about all of the agentset primitives.

More examples of using agentsets are provided in the individual entries for these primitives in the
NetLogo Dictionary. In developing familiarity with programming in NetLogo, it is important to begin
to think of compound commands in terms of how each element passes information to the next one.
Agentsets are an important part of this conceptual scheme and provide the NetLogo developer with
a lot of power and flexibility, as well as being more similar to natural language.

Code Example: Ask Agentset Example

Earlier, we said that agentsets are always in random order, a different random order every time. If
you need your agents to do something in a fixed order, you need to make a list of the agents
instead. See the Lists section below.

Breeds

NetLogo allows you to define different "breeds" of turtles. Once you have defined breeds, you can
go on and make the different breeds behave differently. For example, you could have breeds called
sheep and wolves, and have the wolves try to eat the sheep.

You define breeds using the breed keyword, at the top of the Procedures tab, before any
procedures:

breed [wolves wolf]
breed [sheep a—sheep]

You can refer to a member of the breed using the singular form, just like the_turtle reporter. When
printed, members of the breed will be labeled with the singular name.

Some commands and reporters have the plural name of the breed in them, such as
create—<breeds>. Others have the singular name of the breed in them, such as
<breed>-neighbor?

The order in which breeds are declared is also the order order in which they are layered in the view.
So breeds defined later will appear on top of breeds defined earlier; in this example, sheep will be
drawn over wolves.

When you define a breed such as sheep, an agentset for that breed is automatically created, so
that all of the agentset capabilities described above are immediately available with the sheep
agentset.

The following new primitives are also automatically available once you define a breed:

create—sheep, create—custom-sheep (cct=sheep for short), hatch-sheep.
sprout—sheep, sheep—here, sheep—at, sheep—on, and is—a—sheep?.

Also, you can use sheep—own to define new turtle variables that only turtles of the given breed
have.

88 Programming Guide

NetLogo 3.1.1 User Manual

A turtle's breed agentset is stored in the breed turtle variable. So you can test a turtle's breed, like
this:

if breed = wolves [...]

Note also that turtles can change breeds. A wolf doesn't have to remain a wolf its whole life. Let's
change a random wolf into a sheep:

ask one—of wolves [set breed sheep]

The set-default—=shape primitive is useful for associating certain turtle shapes with certain
breeds. See the section on shapes_below.

Here is a quick example of using breeds:

breed [mice mouse]
breed [frogs frog]
mice—-own [cheese]
to setup
ca
create—custom-mice 50
[set color white
set cheese random 10]
create—custom—frogs 50
[set color green |
end

Code Example: Breeds and Shapes Example

Buttons

Buttons in the interface tab provide an easy way to control the model. Typically a model will have at
least a "setup" button, to set up the initial state of the world, and a "go" button to make the model
run continuously. Some models will have additional buttons that perform other actions.

A button contains some NetLogo code. That code is run when you press the button.

A button may be either a "once button", or a "forever button"”. You can control this by editing the
button and checking or unchecking the "Forever" checkbox. Once buttons run their code once, then
stop and pop back up. Forever buttons keep running their code over and over again, until either the
code hits the stop command, or you press the button again to stop it. If you stop the button, the
code doesn't get interrupted. The button waits until the code has finished, then pops up.

Normally, a button is labeled with the code that it runs. For example, a button that says "go" on it
usually contains the code "go", which means "run the go procedure”. (Procedures are defined in the
Procedures tab; see below.) But you can also edit a button and enter a "display name" for the
button, which is a text that appears on the button instead of the code. You might use this feature if
you think the actual code would be confusing to your users.

When you put code in a button, you must also specify which agents you want to run that code. You
can choose to have the observer run the code, or all turtles, or all patches. (If you want the code to

Programming Guide 89

NetLogo 3.1.1 User Manual

be run by only some turtles or some patches, you could make an observer button, and then have
the observer use the ask command to ask only some of the turtles or patches to do something.)

When you edit a button, you have the option to assign an "action key". This makes that key on the
keyboard behave just like a button press. If the button is a forever button, it will stay down until the
key is pressed again (or the button is clicked). Action keys are particularly useful for games or any
model where rapid triggering of buttons is needed.

Buttons take turns

More than one button can be pressed at a time. If this happens, the buttons "take turns", which
means that only one button runs at a time. Each button runs its code all the way through once while
the other buttons wait, then the next button gets its turn.

In the following examples, "setup" is a once button and "go" is a forever button.

Example #1: The user presses "setup", then presses "go" immediately, before the "setup” has
popped back up. Result: "setup"” finishes before "go" starts.

Example #2: While the "go" button is down, the user presses "setup". Result: the "go" button
finishes its current iteration. Then the "setup” button runs. Then "go" starts running again.

Example #3: The user has two forever buttons down at the same time. Result: first one button runs
its code all the way through, then the other runs its code all the way through, and so on, alternating.

Note that if one button gets stuck in an infinite loop, then no other buttons will run.
Buttons and view updates

When you edit a button, there is a checkbox called "Force view update after each run". Below the
checkbox is a note that reads "Checking this box produces smoother animation, but may make the
button run more slowly."

Most of the time, it's enough to know that if you prefer smooth animation check the box and if you
prefer speed uncheck it. In some models, the difference is dramatic; in others, it's hardly noticeable.
It depends on the model.

What follows is a more detailed explanation of what's really going on with this checkbox.

To understand why this option is offered, you need to understand a little about how NetLogo
updates the view. When something changes in the world, for example if a turtle moves or a patch
changes color, the change does not always immediately become visible. NetLogo would run too
slowly if changes always immediately became visible. So NetLogo waits until a certain amount of
time has passed, usually about 1/5 of a second, and then redraws the view, so that all the changes
that have happened so far become visible. This is sometimes called "skipping frames", by analogy
with movies.

Skipping frames is good because each frame takes NetLogo time to draw, so your model runs
faster if NetLogo can skip some of them. But skipping frames may be bad if the frames skipped
contained information that you wanted to see. Sometimes the way a model looks when frames are
being skipped can be misleading.

90 Programming Guide

NetLogo 3.1.1 User Manual

Even when the checkbox is on for a button, NetLogo will still skip frames while the code in the
button is running. Checking the box only ensures that NetLogo will draw a frame when the code is
done.

In some contexts, you may want to force NetLogo to draw a frame even in the middle of button
code. To do that, use the display command; that forces NetLogo to refresh the view immediately.

In other contexts, you may want to force NetLogo never to draw a frame in the middle of button
code, only at the end. To ensure that, put no—display at the beginning of the code and display
at the end. Note also that NetLogo will never draw on—screen when inside a
without=interruption block.

Turtle and patch forever buttons

There is a subtle difference between putting commands in a turtle or patch forever button, and
putting the same commands in an observer button that does ask turtles or ask patches. An

"ask" doesn't complete until all of the agents have finished running all of the commands in the "ask".
So the agents, as they all run the commands concurrently, can be out of sync with each other, but
they all sync up again at the end of the ask. The same isn't true of turtle and patch forever buttons.
Since ask was not used, each turtle or patch runs the given code over and over again, so they can
become (and remain) out of sync with each other.

At present, this capability is very rarely used in the models in our Models Library. A model that does
use the capability is the Termites model, in the Biology section of Sample Models. The "go" button
is a turtle forever button, so each termite proceeds independently of every other termite, and the
observer is not involved at all. This means that if, for example, you wanted to add a plot to the
model, you would need to add a second forever button (an observer forever button), and run both
forever buttons at the same time.

At present, NetLogo has no way for one forever button to start another. Buttons are only started
when you press them.

Synchronization

In both StarLogoT and NetLogo, commands are executed asynchronously; each turtle or patch
does its list of commands as fast as it can. In StarLogoT, one could make the turtles "line up" by
putting in a comma (,). At that point, the turtles would wait until all were finished before any went on.

The equivalent in NetLogo is to come to the end of an ask block. If you write it this way, the two
steps are not synced:

ask turtles
[fd random 10
do-stuff]

Since the turtles will take varying amounts of time to move, they'll begin "do-stuff" at different times.

But if you write it this way, they are:

ask turtles [fd random 10]
ask turtles [do—stuff]

Programming Guide 91

NetLogo 3.1.1 User Manual

Here, some of the turtles will have to wait after moving until all the other turtles are done moving.
Then the turtles all begin "do-stuff" at the same time.

This latter form is equivalent to this use of the comma in StarLogoT:

fd random 10,
do-stuff ,

Lists

In the simplest models, each variable holds only one piece of information, usually a number or a
string. The list feature lets you store multiple pieces of information in a single variable by collecting
those pieces of information in a list. Each value in the list can be any type of value: a number, or a
string, an agent or agentset, or even another list.

Lists allow for the convenient packaging of information in NetLogo. If your agents carry out a
repetitive calculation on multiple variables, it might be easier to have a list variable, instead of
multiple number variables. Several primitives simplify the process of performing the same
computation on each value in a list.

The_Primitives Dictionary has a section that lists all of the list-related primitives.

Constant lists

You can make a list by simply putting the values you want in the list between brackets, like this: set
mylist [2 4 6 8]. Note that the individual values are separated by spaces. You can make lists
that contain numbers and strings this way, as well as lists within lists, for example [[2 4] [3

5]].

The empty list is written by putting nothing between the brackets, like this: [].

Building lists on the fly

If you want to make a list in which the values are determined by reporters, as opposed to being a
series of constants, use the list reporter. The list reporter accepts two other reporters, runs

them, and reports the results as a list.

If | wanted a list to contain two random values, | might use the following code:

set random-list list (random 10) (random 20)

This will set random-list to a new list of two random integers each time it runs.

To make longer or shorter lists, you can use the list reporter with fewer or more than two inputs,
but in order to do so, you must enclose the entire call in parentheses, e.g.:

(list random 10)
(list random 10 random 20 random 30)

For more information, see_Varying Numbers of Inputs.

92 Programming Guide

NetLogo 3.1.1 User Manual

Some kinds of lists are most easily built using the_n—values reporter, which allows you to construct a
list of a specific length by repeatedly running a given reporter. You can make a list of the same
value repeated, or all the numbers in a range, or a lot of random numbers, or many other
possibilities. See dictionary entry for details and examples.

The_values—from primitive lets you construct a list from an agentset. It reports a list containing each
agent's value for the given reporter. (The reporter could be a simple variable name, or a more
complex expression —— even a call to a procedure defined using to—report.) A common idiom is

max values—from turtles [...]
sum values—from turtles [...]

and so on.

You can combine two or more lists using the_sentence reporter, which concatenates lists by
combining their contents into a single, larger list. Like list, sentence normally takes two inputs,
but can accept any number of inputs if the call is surrounded by parentheses.

Changing list items

Technically, lists can't be modified, but you can construct new lists based on old lists. If you want
the new list to replace the old list, use set. For example:

set mylist [2 7 5 Bob [3 0 -2]]

; mylistis now [2 7 5 Bob [3 0 -2]]
set mylist replace-item 2 mylist 10
; mylist is now [2 7 10 Bob [3 0 -2]]

The replace-item reporter takes three inputs. The first input specifies which item in the list is to
be changed. 0 means the first item, 1 means the second item, and so forth.

To add an item, say 42, to the end of a list, use the |put reporter. (fput adds an item to the
beginning of a list.)

set mylist Iput 42 mylist
; mylistis now [2 7 10 Bob [3 0 -2] 42]

But what if you changed your mind? The but=last (bl for short) reporter reports all the list items
but the last.

set mylist but-last mylist
; mylist is now [2 7 10 Bob [3 0 -2]]

Suppose you want to get rid of item 0, the 2 at the beginning of the list.

set mylist but—first mylist
; mylist is now [7 10 Bob [3 0 -2]]

Suppose you wanted to change the third item that's nested inside item 3 from -2 to 9? The key is to
realize that the name that can be used to call the nested list [3 0 -2] is item 3 mylist. Then the
replace—item reporter can be nested to change the list-within—a-list. The parentheses are

added for clarity.

Programming Guide 93

NetLogo 3.1.1 User Manual

set mylist (replace-item 3 mylist
(replace-item 2 (item 3 mylist) 9))
; mylist is now [7 10 Bob [3 0 9]]

Iterating over lists

If you want to do some operation on each item in a list in turn, the foreach command and the map
reporter may be helpful.

foreach is used to run a command or commands on each item in a list. It takes an input list and a
block of commands, like this:

foreach [2 4 6]
[ert?
show "created " + ? + " turtles" |
=> created 2 turtles
=> created 4 turtles
=> created 6 turtles

In the block, the variable 2 holds the current value from the input list.

Here are some more examples of foreach:

foreach [1 2 3] [ask turtles [fd ?]]

;; turtles move forward 6 patches

foreach [true false true true] [ask turtles [if ? [fd 1]]]
;; turtles move forward 3 patches

map is similar to foreach, but it is a reporter. It takes an input list and another reporter. Note that
unlike foreach, the reporter comes first, like this:

show map [round ?] [1.2 2.2 2.7]
;prints [1 2 3]

map reports a list containing the results of applying the reporter to each item in the input list. Again,
use ? to refer to the current item in the list.

Here is another example of map:

show map [? <0][1-134-2-10]
;; prints [false true false false true true]

foreach and map won't necessarily be useful in every situation in which you want to operate on an
entire list. In some situations, you may need to use some other technique such as a loop using
repeat or while, or a recursive procedure.

The_sort=by primitive uses a similar syntax to map and foreach, except that since the reporter
needs to compare two objects, the two special variables ?1 and ?2 are used in place of ?.

Here is an example of sort-by:

show sort-by [?1 < ?2] [4 1 3 2]
;prints [12 3 4]

94 Programming Guide

NetLogo 3.1.1 User Manual

Varying Numbers of Inputs

Some commands and reporters involving lists and strings may take a varying number of inputs. In
these cases, in order to pass them a number of inputs other than their default, the primitive and its
inputs must be surrounded by parentheses. Here are some examples:

show list 1 2
=>[12]

show (list 1 2 3 4)
=>[1234]

show (list)

=

Note that each of these special commands has a default number of inputs for which no parentheses
are required. The primitives which have this capability are_list, word, sentence, map, and_foreach.

Lists of agents
Earlier, we said that agentsets are always in random order, a different random order every time. If
you need your agents to do something in a fixed order, you need to make a list of the agents

instead.

There are two primitives that help you do this, sort and sort=by.

Both sort and sort—-by can take an agentset as input. The result is always a new list, containing
the same agents as the agentset did, but in a particular order.

If you use sort on an agentset of turtles, the result is a list of turtles sorted in ascending order by
who number.

If you use sort on an agentset of patches, the result is a list of patches sorted left-to-right,
top—to—bottom.

If you need descending order instead, you can combine reverse with sort, for example reverse
sort turtles.

If you want your agents to be ordered by some other criterion than the standard ones sort uses,
you'll need to use sort-by instead.

Here's an example:
sort-by [size—of ?1 <size-of ?2] turtles

This returns a list of turtles sorted in ascending order by their turtle variable size.

Asking a list of agents

Once you have a list of agents, you might want to ask them each to do something. To do this, use
the foreach and ask commands in combination, like this:

foreach sort turtles [
ask ? [

Programming Guide 95

NetLogo 3.1.1 User Manual

]
]

This will ask each turtle in ascending order by who number. Substitute "patches" for "turtles” to ask
patches in left-to-right, top—to—bottom order.

If you use foreach like this, the agents in the list run the commands inside the ask sequentially, not
concurrently. Each agent finishes the commands before the next agent begins them.

Note that you can't use ask directly on a list of turtles. ask only works with agentsets and single
agents.

Math

NetLogo supports two different kinds of math, integer and floating point.

Integers have no fractional part and may range from —2147483648 to 2147483647 (-2/31 to
2731-1). Integer operations that exceed this range will not cause runtime errors, but will produce
incorrect answers.

Floating point numbers are numbers containing a decimal point. In NetLogo, they operate according
to the IEEE 754 standard for double precision floating point numbers. These are 64 bit numbers
consisting of one sign bit, an 11-bit exponent, and a 52-bit mantissa. See the IEEE 754 standard
for details. Any operation which produces the special quantities "infinity" or "not a number" will
cause a runtime error.

In NetLogo, integers and floating point numbers are interchangeable, in the sense that as long as
you stay within legal ranges, it is never an error to supply 3 when 3.0 is expected, or 3.0 when 3 is
expected. In fact, 3 and 3.0 are considered equal, according to the = (equals) operator. If a floating
point number is supplied in a context where an integer is expected, the fractional part is simply
discarded. So for example, crt 3.5 creates three turtles; the extra 0.5 is ignored.

Scientific notation

Very large or very small floating point numbers are displayed by NetLogo using "scientific notation".
Examples:

0> show 0.000000000001

observer: 1.0E-12

O> show 50000000000000000000.0
observer: 5.0E19

Numbers in scientific notation are distinguished by the presence of the letter E (for "exponent"). It
means "times ten to the power of", so for example, 1.0E-12 means 1.0 times 10 to the —12 power:

O>show 1.0 *10 " -12
observer: 1.0E-12

You can also use scientific notation yourself in NetLogo code:

O> show 3.0E6
observer: 3000000.0

96 Programming Guide

NetLogo 3.1.1 User Manual

O> show 3.0E7
observer: 3.0E7
O> show 8.0E-3
observer: 0.0080
O> show 8.0E-4
observer: 8.0E-4

These examples show that numbers are displayed using scientific notation if the exponent is less
than -3 or greater than 6.

When entering a number using scientific notation, you must include the decimal point. For example,
1E8 will not be accepted. Instead you must write 1.0E8 or 1.ES:

O> show 1.0E8

observer: 1.0E8

O> show 1.E8

observer: 1.0E8

O> show 1E8

ERROR: lllegal number format

When entering a number, the letter E may be either upper or lowercase. When printing a number,
NetLogo always uses an uppercase E:

O> show 4.5e10
observer: 4.5E10

Floating point accuracy

When using floating point numbers, you should be aware that due to the limitations of the binary
representation for floating point numbers, you may get answers that are slightly inaccurate. For
example:

O>show 0.1 +0.1+0.1

observer: 0.30000000000000004
O> show cos 90

observer: 6.123233995736766E-17

This is an inherent issue with floating point arithmetic; it occurs in all programming languages that
support floating point.

If you are dealing with fixed precision quantities, for example dollars and cents, a common
technique is to use only integers (cents) internally, then divide by 100 to get a result in dollars for
display.

If you must use floating point numbers, then in some situations you may need to replace a
straightforward equality test such as if x = 1 [...] with a test that tolerates slight
imprecision, for example if abs (x — 1) <0.0001 [...].

Also, the precision primitive is handy for rounding off numbers for display purposes. NetLogo
monitors round the numbers they display to a configurable number of decimal places, too.

Programming Guide 97

NetLogo 3.1.1 User Manual
Random Numbers

The random numbers used by NetLogo are what is called "pseudo-random". (This is typical in
computer programming.) That means they appear random, but are in fact generated by a
deterministic process. "Deterministic" means that you get the same results every time, if you start
with the same random "seed". We'll explain in a minute what we mean by "seed".

In the context of scientific modeling, pseudo—-random numbers are actually desirable. That's
because it's important that a scientific experiment be reproducible —— so anyone can try it
themselves and get the same result that you got. Since NetLogo uses pseudo-random numbers,
the "experiments" that you do with it can be reproduced by others.

Here's how it works. NetLogo's random number generator can be started with a certain seed value,
which can be any integer. Once the generator has been "seeded" with the random-seed
command, it always generates the same sequence of random numbers from then on. For example,
if you run these commands:

random-seed 137
show random 100
show random 100
show random 100

You will always get the numbers 95, 7, and 54.

Note, however, that you're only guaranteed to get those same numbers if you're using the same
version of NetLogo. Sometimes when we make a new version of NetLogo we change the random
number generator. For example, NetLogo 2.0 has a different generator than NetLogo 1.3 did. 2.0's
generator (which is known as the "Mersenne Twister") is faster and generates numbers that are
statistically more "random" than 1.3's (Java's built—in "linear congruential" generator).

To create a number suitable for seeding the random number generator, use the nhew-seed reporter.
new-seed creates a seed, evenly distributed over the space of possible seeds, based on the
current date and time. And it never reports the same number twice in a row.

Code Example: Random Seed Example

If you don't set the random seed yourself, NetLogo sets it to a value based on the current date and
time. There is no way to find out what random seed it chose, so if you want your model run to be
reproducible, you must set the random seed yourself ahead of time.

The NetLogo primitives with "random" in their names (random, random—float, and so on) aren't the
only ones that use pseudo-random numbers. Many other operations also make random choices.
For example, agentsets are always in random order, one—of and n—of choose agents randomly,
the sprout command creates turtles with random colors and headings, and the downhill reporter
chooses a random patch when there's a tie. All of these random choices are governed by the
random seed as well, so model runs can be reproducible.

98 Programming Guide

NetLogo 3.1.1 User Manual
Turtle shapes

In NetLogo, turtle shapes are vector shapes. They are built up from basic geometric shapes;
squares, circles, and lines, rather than a grid of pixels. Vector shapes are fully scalable and
rotatable. NetLogo caches bitmap images of vector shapes size 1, 1.5, and 2 in order to speed up
execution.

A turtle's shape is stored in its shape variable and can be set using the set command.

New turtles have a shape of "default". The set-default—shape primitive is useful for changing
the default turtle shape to a different shape, or having a different default turtle shape for each breed
of turtle.

The shapes primitive reports a list of currently available turtle shapes in the model. This is useful if,
for example, you want to assign a random shape to a turtle:

ask turtles [set shape one-of shapes]

Use the Shapes Editor to create your own turtle shapes, or to add shapes to your model from our
shapes library, or to transfer shapes between models. For more information, see the Shapes Editor
section of this manual.

The thickness of the lines used to draw the vector shapes can be controlled by the
set—line—thickness primitive.

Code Examples: Breeds and Shapes Example, Shape Animation Example

Plotting

NetLogo's plotting features let you create plots to help you understand what's going on in your
model.

Before you can plot, you need to create one or more plots in the Interface tab. Each plot should
have a unique name. You'll be using its name to refer to it in your code in the Procedures tab.

For more information on using and editing plots in the Interface tab, see the_Interface Guide.
Specifying a plot

If you only have one plot in your model, then you can start plotting to it right away. But if you have
more than one plot, you have to specify which one you want to plot to. To do this, use the
set—current—plot command with the name of the plot enclosed in double quotes, like this:
set—current-plot "Distance vs. Time"

You must supply the name of the plot exactly as you typed it when you created the plot. Note that

later if you change the name of the plot, you'll also have to update the set—current—plot calls in
your model to use the new name. (Copy and paste can be helpful here.)

Programming Guide 99

NetLogo 3.1.1 User Manual
Specifying a pen

When you make a new plot, it just has one pen in it. If the current plot only has one plot pen, then
you can start plotting to it right away.

But you can also have multiple pens in a plot. You can create additional pens by editing the plot and
using the controls in the "Plot Pens" section at the bottom of the edit dialog. Each pen should have
a unique name. You'll be using its name to refer to it in your code in the Procedures tab.

For a plot with multiple pens, you have to specify which pen you want to plot with. If you don't
specify a pen, plotting will take place with the first pen in the plot. To plot with a different pen, use
the set—current—plot-pen command with the name of the pen enclosed in double quotes, like
this:

set—current-plot-pen "distance"
Plotting points
The two basic commands for actually plotting things are plot and plotxy.

With plot you need only specify the y value you want plotted. The x value will automatically be 0
for the first point you plot, 1 for the second, and so on. (That's if the plot pen's "interval" is the
default value of 1.0; you can change the interval.)

The plot command is especially handy when you want your model to plot a new point at every
time step. Example:

to setup

plot count turtles
end

to go

plot count turtles
end

Note that in this example we plot from both the "setup" and "go" procedures. That's because we
want our plot to include the initial state of the system. We plot at the end of the "go" procedure, not
the beginning, because we want the plot always to be up to date after the go button stops.

If you need to specify both the x and y values of the point you want plotted, then use plotxy
instead.

Code Example: Plotting Example

Other kinds of plots

By default, NetLogo plot pens plot in line mode, so that the points you plot are connected by a line.

100 Programming Guide

NetLogo 3.1.1 User Manual

If you want to move the pen without plotting, you can use the plot—-pen—-up command (ppu for
short). After this command is issued, the plot and plotxy commands move the pen but do not
actually draw anything. Once the pen is where you want it, use plot—pen—-down to put the pen
back down (ppd for short).

If you want to plot individual points instead of lines, or you want to draw bars instead of lines or
points, you need to change the plot pen's "mode". Three modes are available: line, bar, and point.
Line is the default mode.

Normally, you change a pen's mode by editing the plot. This changes the pen's default mode. It's
also possible to change the pen's mode temporarily using the set=plot—-pen—-mode command.
That command takes a number as input: 0 for line, 1 for bar, 2 for point.

Histograms

A histogram is a special kind of plot that measures how frequently certain values, or values in
certain ranges, occur in a collection of numbers that arise in your model.

For example, suppose the turtles in your model have an age variable. You could create a histogram
of the distribution of ages among your turtles with the histogram-from command, like this:

histogram—from turtles [age]

If the data you want to histogram don't come from an agentset but from a list of numbers, use the
histogram-list command instead.

Note that using the histogram commands doesn't automatically switch the current plot pen to bar
mode. If you want bars, you have to set the plot pen to bar mode yourself. (As we said before, you
can change a pen's default mode by editing the plot in the Interface tab.)

The width of the bars in a histogram is controlled by the plot pen's interval. You can set a plot pen's
default interval by editing the plot in the Interface tab. You can also change the interval temporarily
with the set—plot—pen—interval command or the set-histogram—num-bars. If you use the

latter command, NetLogo will set the interval appropriately so as to fit the specified number of bars
within the plot's current x range.

Code Example: Histogram Example

Clearing and resetting

You can clear the current plot with the clear—plot command, or clear every plot in your model
with clear—all-plots. The clear—all command also clears all plots, in addition to clearing
everything else in your model.

If you only want to remove only the points that the current plot pen has drawn, use
plot—pen-reset.

When a whole plot is cleared, or when a pen is reset, that doesn't just remove the data that has
been plotted. It also restores the plot or pen to its default settings, as they were specified in the

Programming Guide 101

NetLogo 3.1.1 User Manual

Interface tab when the plot was created or last edited. Therefore, the effects of such commands as
set-plot—-x-range and set—plot—pen—color are only temporary.

Autoplotting

By default, all NetLogo plots have the "autoplotting" feature enabled. This means that if the model
tries to plot a point which is outside the current displayed range, the range of the plot will grow along
one or both axes so that the new point is visible.

In the hope that the ranges won't have to change every time a new point is added, when the ranges
grow they leave some extra room: 25% if growing horizontally, 10% if growing vertically.

If you want to turn off this feature, edit the plot and uncheck the Autoplot checkbox. At present, it is
not possible to enable or disable this feature only on one axis; it always applies to both axes.

Temporary plot pens

Most plots can get along with a fixed number of pens. But some plots have more complex needs;
they may need to have the number of pens vary depending on conditions. In such cases, you can
make "temporary" plot pens from code and then plot with them. These pens are called "temporary"
because they vanish when the plot is cleared (by the clear—plot, clear-all-plots, or

clear—all commands).

To create a temporary plot pen, use the create—temporary—plot—pen command. Once the pen

has been created, you can use it like any ordinary pen. By default, the new pen is down, is black in
color, has an interval of 1.0, and plots in line mode. Commands are available to change all of these
settings; see the Plotting section of the Primitives Dictionary.

Using a Legend

You can show the legend of a plot by clicking on the word "Pens" in the upper right corner of the
plot. If you don't want a particular pen to show up in the legend you can uncheck the "Show in
Legend" checkbox for that pen in the plot edit dialog.

Conclusion

Not every aspect of NetLogo's plotting system has been explained here. See the Plotting section of
the Primitives Dictionary for information on additional commands and reporters related to plotting.

Many of the Sample Models in the Models Library illustrate various advanced plotting techniques.
Also check out the following code examples:

Code Examples: Plot Axis Example, Plot Smoothing Example

Strings

To input a constant string in NetLogo, surround it with double quotes.

102 Programming Guide

NetLogo 3.1.1 User Manual

The empty string is written by putting nothing between the quotes, like this: ™.

Most of the list primitives work on strings as well:

butfirst "string" => "tring"
butlast "string" => "strin"
empty? " => true

empty? "string" => false

first "string" =>"s"

item 2 "string" => "r"

last "string" =>"g"

length "string" => 6

member? "s" "string" => true
member? "rin" "string" => true
member? "ron" "string" => false
position "s" "string" => 0
position "rin" "string" => 2
position "ron" "string" => false
remove "r" "string" => "sting"
remove "s" "strings" => "tring"
replace—item 3 "string" "0" => "strong"
reverse "string" => "gnirts"

A few primitives are specific to strings, such as is—string?, substring. and word:
is—string? "string" => true

is—string? 37 => false

substring "string" 2 5 => "rin"

word "tur" "tle" => "turtle"

Strings can be compared using the =, !=, <, >, <=, and >= operators.

To concatenate strings, that is, combine them into a single string, you can also use the + (plus)
operator, like this:

"tur“ + Iltlell :> "turtle"
If you need to embed a special character in a string, use the following escape sequences:

* \n = newline
«\t=tab

 \" = double quote
* \\ = backslash

Output

This section is about output to the screen. Output to the screen can also be later saved to a file
using the_export—output command. If you need a more flexible method of writing data to external
files, see the next section,_Eile 1/0.

The basic commands for generating output to the screen in NetLogo are_print, show, type, and
write. These commands send their output to the Command Center.

For full details on these four commands, see their entries in the Primitives Dictionary. Here is how

Programming Guide 103

NetLogo 3.1.1 User Manual

they are typically used:

* print is useful in most situations.

 show lets you see which agent is printing what.

« type lets you print several things on the same line.

« write lets you print values in a format which can be read back in using_file—read.

A NetLogo model may optionally have an "output area" in its Interface tab, separate from the
Command Center. To send output there instead of the Command Center, use the_output—print,

output—show, output-type, and_output-write commands.

The output area can be cleared with the_clear—output command and saved to a file with
export—output. The contents of the output area will be saved by the_export-world command. The
import=world command will clear the output area and set its contents to the value in imported world
file. It should be noted that large amounts of data being sent to the output area can increase the
size of your exported worlds.

If you use_output—print, output—show, output-type, output—write, clear—output, or_export—output in a
model which does not have a separate output area, then the commands apply to the output portion

of the Command Center.

File 1/0

In NetLogo, there is a set of primitives that give you the power to interact with outside files. They all
begin with the prefix file—.

There are two main modes when dealing with files: reading and writing. The difference is the
direction of the flow of data. When you are reading in information from a file, data that is stored in
the file flows into your model. On the other hand, writing allows data to flow out of your model and
into a file.

When a NetLogo model runs as an applet within a web browser, it will only be able to read data
from files which are in the same directory on the server as the model file. Applets cannot write to
any files.

When working with files, always begin by using the primitive file—open. This specifies which file
you will be interacting with. None of the other primitives work unless you open a file first.

The next file— primitive you use dictates which mode the file will be in until the file is closed, reading
or writing. To switch modes, close and then reopen the file.

The reading primitives include file-read., file—-read-line, file—read—characters, and
file—at—end? Note that the file must exist already before you can open it for reading.

Code Examples: File Input Example

The primitives for writing are similar to the primitives that print things in the Command Center,
except that the output gets saved to a file. They include file—print, file—show, file—type

104 Programming Guide

NetLogo 3.1.1 User Manual

and file—write. Note that you can never "overwrite" data. In other words, if you attempt to write
to a file with existing data, all new data will be appended to the end of the file. (If you want to
overwrite a file, use file—delete to delete it, then open it for writing.)

Code Examples: File Output Example

When you are finished using a file, you can use the command file—close to end your session
with the file. If you wish to remove the file afterwards, use the primitive file—delete to delete it.
To close multiple opened files, one needs to first select the file by using file—open before closing
it.

;; Open 3 files

file—open "myfilel.txt"
file—open "myfile2.txt"
file—open "myfile3.txt"

:» Now close the 3 files
file—close

file—open "myfile2.txt"
file—close

file—open "myfilel.txt"
file—close

Or, if you know you just want to close every file, you can use file—close-all.

Two primitives worth noting are file—write and file—read . These primitives are designed to
easily save and retrieve NetLogo constants such as numbers, lists, booleans, and strings. file—write
will always output the variable in such a manner that file—read will be able to interpret it correctly.

file—open "myfile.txt" ;; Opening file for writing
ask turtles

[file—write xcor file—write ycor]
file—close

file—open "myfile.txt" ;; Opening file for reading
ask turtles

[setxy file-read file-read]
file—close

Code Examples: File Input Example and File Output Example

Letting the user choose

The_user—directory, user—file, and_user—new-file primitives are useful when you want the user to
choose a file or directory for your code to operate on.

Movies

This section describes how to capture a QuickTime movie of a NetLogo model.

Programming Guide 105

NetLogo 3.1.1 User Manual

First, use the movie—start command to start a new movie. The filename you provide should end
with .mov, the extension for QuickTime movies.

To add a frame to your movie, use either movie—grab-view or mqvie—grab-interface,
depending on whether you want the movie to show just the current view, or the entire Interface tab.

In a single movie, you must use only one movie—grab— primitive or the other; you can't mix them.

When you're done adding frames, use movie—close.

;; export a 30 frame movie of the view
setup

movie-start "out.mov"

movie—grab-view ;; show the initial state
repeat 30

[go) _
movie—grab-view]
movie—close

By default, a movie will play back at 15 frames per second. To make a movie with a different frame
rate, call movie—set—frame-rate with a different number of frames per second. You must set the
frame rate after movie—start but before grabbing any frames.

To check the frame rate of your movie, or to see how many frames you've grabbed, call
movie—status, which reports a string that describes the state of the current movie.

To throw away a movie and delete the movie file, call movie—cancel.

NetLogo movies are exported as uncompressed QuickTime files. To play a QuickTime movie, you
can use_QuickTime Player, a free download from Apple.

Since the movies are not compressed, they can take up a lot of disk space. You will probably want
to compress your movies with third—party software. The software may give you a choice of different
kinds of compression. Some kinds of compression are lossless, while others are lossy. "Lossy"
means that in order to make the files smaller, some of the detail in the movie is lost. Depending on
the nature of your model, you may want to avoid using lossy compression, for example if the view
contains fine pixel-level detail.

Code Example: Movie Example

Perspective

The 2D and the 3D view show the world from the perspective of the observer. By default the
observer is looking down on the world from the positive z—axis at the origin. You can change the
perspective of the observer by using the follow, ride and watch observer commands and

follow—me, ride-me and watch—me turtle commands. When in follow or ride mode the observer
moves with the subject agent around the world. The difference between follow and ride is only
visible in the 3D view. In the 3D view the user can change the distance behind the agent using the
mouse. When the observer is following at zero distance from the agent it is actually riding the agent.
When the observer is in watch mode it tracks the movements of one turtle without moving. In both
views you will see a spotlight appear on the subject and in the 3D view the observer will turn to face

106 Programming Guide

http://www.apple.com/quicktime/download/

NetLogo 3.1.1 User Manual

the subject. To determine which agent is the focus you can use the subject reporter.

Code Example: Perspective Example

Drawing

The drawing is a layer where turtles can make visible marks.

In the view, the drawing appears on top of the patches but underneath the turtles. Initially, the
drawing is empty and transparent.

You can see the drawing, but the turtles (and patches) can't. They can't sense the drawing or react
to it. The drawing is just for people to look at.

Turtles can draw and erase lines in the drawing using the pen—down and pen—erase commands.
When a turtle's pen is down (or erasing), the turtle draws (or erases) a line behind it whenever it
moves. The lines are the same color as the turtle. To stop drawing (or erasing), use pen—-up.

Lines drawn by turtles are normally one pixel thick. If you want a different thickness, set the
pen-size turtle variable to a different number before drawing (or erasing). In new turtles, the
variable is set to 1.0.

Here's some turtles which have made a drawing over a grid of randomly shaded patches. Notice
how the turtles cover the lines and the lines cover the patch colors. The pen-size used here was
2.0:

The stamp command lets a turtle leave an image of itself behind in the drawing and stamp-erase
lets it remove the pixels below it in the drawing.

To erase the whole drawing, use the observer commmand clear—drawing. (You can also use
clear—all, which clears everything else too.)

Importing an image

Programming Guide 107

NetLogo 3.1.1 User Manual

The observer command import—drawing command allows you to import an image file from disk
into the drawing.

import—drawing is useful only for providing a backdrop for people to look at. If you want turtles
and patches to react to the image, you should use import—pcolors instead.

Comparison to other Logos
Drawing works somewhat differently in NetLogo than some other Logos.
Notable differences include:

* New turtles' pens are up, not down.

* Instead of using a fence command to confine the turtle inside boundaries, in NetLogo you
edit the world and turn wrapping off.

» There is no screen—color, bgcolor, or setbg. You can make a solid background by
coloring the patches, e.g. ask patches [set pcolor blue].

Drawing features not supported by NetLogo:

 There is no window command. This is used in some other Logos to let the turtle roam over
an infinite plane.
* There is no flood or fill command to fill an enclosed area with color.

Topology

The topology of the NetLogo world has four potential values, torus, box, vertical cylinder, or
horizontal cylinder. The topology is controlled by enabling or disabling wrapping in the x ory
directions. The default world is a torus, as were all NetLogo worlds before NetLogo 3.1.

A torus wraps in both directions, meaning that the top and bottom edges of the world are connected
and the left and right edges are connected. So if a turtle moves beyond the right edge of the world it
appears again on the left and the same for the top and bottom.

A box does not wrap in either direction. The world is bounded so turtles that try to move off the edge
of the world cannot. Note that the patches around edge of the world have fewer than eight
neighbors; the corners have three and the rest have five.

Horizontal and vertical cylinders wrap in one direction but not the other. A horizontal cylinder wraps
vertically, so the top of the world is connected to the bottom. but the left and right edges are
bounded. A vertical cylinder is the opposite; it wraps horizontally so the left and right edges are
connected, but the top and bottom edges are bounded.

Code Example: Neighbors Example

Since NetLogo 3.0 there have been settings to enable wrapping visually, so if a turtle shape extends
past an edge, part of the shape will appear on the other edge of the view. (Turtles themselves are
points that take up no space, so they cannot be on both sides of the world at once, but in the view,

108 Programming Guide

NetLogo 3.1.1 User Manual

they appear to take up space because they have a shape.)

Wrapping also affects how the view looks when you are following a turtle. On a torus, wherever the
turtle goes, you will always see the whole world around it:

A

(-1,-2) A0,-2) (I.A(Z,—Z) (-2,-2)

(—l (.2) (1,2) (2,2) (+2,2)
-

(=1,1) (0,1) (1,1) (2,1) (£2,1)

(-1,0) (0,0) (1,0) (2.0/\-2,0)

(-1,-1) (0,-1) (1,-1) (2,-1) (-2,-1)

Whereas in a box or cylinder the world has edges, so the areas past those edges show up in the
view as gray:

Y (1,2)
x

(0,1) (1,1)

(0,0) (1,0)

(0,-1) (1,-1)

Code Example: Termites Perspective Demo (torus), Ants Perspective Demo (box)

Instead of 3.0's settings that only control the appearance of wrapping in the view, NetLogo 3.1 has
settings that control whether the world actually wraps or not, that is, whether opposite edges are in
fact connected. These new wrapping settings determine the world topology, that is, whether the
world is a torus, box, or cylinder. This affects the behavior and not just the visual appearance of the

Programming Guide 109

NetLogo 3.1.1 User Manual

model.

In the past, model authors were required to write extra code to simulate a box world, with the aid of
special "no—wrap" primitives. No—wrap versions were provided for distance(xy), in-radius, in—cone,
face(xy), and towards(xy). In 3.1 the special no—wrap versions are no longer necessary. Instead, the
topology controls whether the primitives wrap or not. They always use the shortest path allowed by
the topology. For example, the distance from the center of the patches in the bottom right corner
(min—pxcor, min—pycor) and the upper left corner (max—pxcor , max—pycor) will be as follows for
each topology given that the min and max pxcor and pycor are +/-2:

e Torus - sqrt(2) ~ 1.414 (this will be the same for all world sizes since the patches are
directly diagonal to each other in a torus.)

» Box - sgrt(world-width”"2 + world-height*2) ~ 7.07

« Vertical Cylinder — sqgrt(world—height*2 + 1) ~ 5.099

 Horizontal Cylinder - sqrt(world-width~2 + 1) ~ 5.099

All the other primitives will act similarly to distance. If you formerly used no—wrap primitives in your
model we recommend removing them and changing the topology of the world instead.

There are a number of reasons to change your model to use topologies rather than no—wrap
primitives.

First, we expect if you are using no—wrap primitives, you are actually modeling a world that is not a
torus. If you use a topology that matches the world you are modeling NetLogo does automatic
bounds checking for you, it should make your life easier, your code simpler to understand and it
adds visual cues to help the model user understand what you are modeling. Note that even with
no—wrap primitives it was very difficult to model cylinders since the no—wrap primitives report the
distance or heading when wrapping is not allowed in either direction.

You might have bugs in your model. If you are using a combination of no—wrap and wrap primitives,
either it doesn't matter for some reason or there is a bug in your model (we found a few bugs in our
models). For example, the Conductor model compared distance—no—wrap to distance to determine
whether the next position is wrapped around the world, in which case the electron exits the system.
This is a clever way to solve the problem, but unfortunately it is flawed. Electrons that wrap in the y
direction were also exiting the system which is incorrect in this case. The only correct way to exit is
to reach the cathode at the left end of the wire.

If you remove no-wrap commands the topology is no longer hard coded into the model so it's easier
to test out your model on a different shape of world without a lot of extra coding (you may have to
add a few extra checks to go from torus to box, this is explained more in—depth in the How to
convert section.)

Note that though we've removed the no—wrap primitives from the dictionary they are still available
for you to use; we did this so that old models don't have to be changed in order to run.

How to convert your model

When you first open up your model in 3.1 NetLogo will automatically change all cases of (
—screen—edge—x) to min—pxcor and all cases of screen—edge—x to max—pxcor (and

similarly for y) Though this is not directly related to the topology changes, you may also want to
think about whether moving the origin off-center makes sense in your model at this time. Before

110 Programming Guide

NetLogo 3.1.1 User Manual

NetLogo 3.1 the world had to be symmetrical around the origin, thus, the world had to have an odd
width and height. This is no longer true since you may use any min and max combinations you wish,
given that the point (0,0) still exists in the world. If you are logically only modeling in one or two
guadrants, or if it makes your code simpler to only use positive numbers you might want to consider
changing your model. If you've modeled something that requires and even grid you'll certainly want
to remove the programming hacks required to make that possible in the past.

Code Examples: Lattice Gas Automaton, Binomial Rabbits, Rugby

For NetLogo 3.1 we added new primitives which are essential if you change the topology, and quite
convenient even if you don't. random-pxcor, random-pycor, random-xcor, and_random-ycor report
random values within the range between maximum and minimum (x and y). In older versions of
NetLogo we often relied on wrapping to place turtles randomly across the world by writing setxy
random-—float screen—size—x random—float screen-size-y. However, if wrapping is

not allowed in one direction or the other this no longer works (you get a runtime error for trying to
place turtles outside the world). Regardless of topology, it is simpler and more straight forward to
use setxy random-xcor random-ycor instead.

To convert a model to use a topology you must first decide what settings best describe the world. If
the answer is not immediately obvious to you based on the real world, (a room is a box, a wire is a
cylinder) there are a few clues that will help you. If anywhere in the code you are checking the
bounds of the world or if some patches are not considered neighbors of the patches on the other
side of the view it is likely that you are not using a torus. If you check bounds in both the x and y
directions it's a box, in the x direction only, a horizontal cylinder, the y a vertical cylinder.

If you use no—wrap primitives you are probably not modeling a torus, however, be careful with this
criterion if you use a mix of no—wrap and wrap primitives. It may be that you were using a no—wrap
primitive for a visual element but the rest of the NetLogo world is still a torus.

After you've determined the topology and changed it by editing the view, you may have to make a
few small changes to the code. If you've decided that the world is a torus you probably don't have to
make any changes at all. If your model only uses patch neighbors and diffuse you probably will not
need to make many changes.

If your model has turtles that move around your next step is to determine what happens to them
when they reach the edge of the world. There are a few common options: the turtle is reflected back
into the world (either systematically or randomly), the turtle exits the system (dies), or the turtle is
hidden. It is no longer necessary to check the bounds using turtle coordinates, instead we can just
ask NetLogo if a turtle is at the edge of the world. There are a couple ways of doing this, the
simplest is to use the can—-move? primitive.

if not can—-move? distance [rt 180]

can—move? merely returns true if the position distance in front of the turtle is inside the NetLogo
world, false otherwise. In this case, if the turtle is at the edge of the world it simple goes back the
way it came. You can also use patch—ahead 1 != nobody in place of can—-move?. If you need

to do something smarter that simply turning around it may be useful to use patch—at with dx and

dy.

Programming Guide 111

NetLogo 3.1.1 User Manual

if patch—at dx O = nobody [
set heading (- heading)

]
if patch—at 0 dy = nobody [
set heading (180 - heading)

]

This tests whether the turtle is hitting a horizontal or vertical wall and bounces off that wall.

In some models if a turtle can't move forward it simply dies (exits the system, like in Conductor or
Mousetraps).

if not can—-move? distance[die]

If you are moving turtles using setxy rather than forward you should test to make sure the patch you
are about to move to exists since setxy throws a runtime error if it is given coordinates outside the
world. This is a common situation when the model is simulating an infinite plane and turtles outside
the view should simply be hidden.

let new—x new-value—of-xcor
let new-y new-value—of-ycor

ifelse patch—at (new—x — xcor) (new-y — ycor) = nobody
[hide—turtle]
[setxy new—x new-y
show-turtle]

Several models in the Models Library use this technique, Gravitation, N-Bodies, and Electrostatics
are good examples.

By using a different topology you get diffuse for free (which was fairly difficult to do in the past).
Each patch diffuses and equal amount of the diffuse variable to each of its neighbors, if it has fewer
than 8 neighbors (or 4 if you are using diffuse4) the remainder stays on the diffusing patch. This
means that the overall sum of patch—variable across the world remains constant. If you had special
code to handle diffuse then you can remove it. However, if you want the diffuse matter to still fall off
the edges of the world as it would on an infinite plane you still need to clear the edges each step as
in the Diffuse Off Edges Example.

Links

Links are an experimental part of NetLogo and primitives related to Links are subject to
change. Because links are experimental, the names of the primitives begin with two underscores.

A link is a special turtle connecting two other turtles. The two turtles are called nodes. A link turtle's
size is always equal to the distance between the two node turtles. Its heading is always equal to the
heading from one node turtle to the other. Its location is always halfway between the two node
turtles. When one of the nodes moves, the link turtle will automatically change its heading, size, and
location.

There are two flavors of links, undirected and directed. A directed link is out of, or from, one node
and into, or to, another node. The relationship of a parent to a child could be modeled as a directed
link. An undirected link appears the same to both nodes, each node has a link with another node.
The relationship between spouses, or siblings, could be modeled as an undirected link.

112 Programming Guide

NetLogo 3.1.1 User Manual

All link turtles must have a breed. This means you must define at least one breed in your model

using the_breed keyword. Link turtles can only be created using specific commands. The commands
create—<breed>-with and create—<breeds>-with creates undirected links; the

commands __create—<breed>—to, __create—<breeds>—to, __create—<breed>—from.,

and __create—<breeds>—from create directed links.

breed [links link]
breed [nodes node]
to setup
ca
create—custom—nodes 2 [fd 10]
ask node O [__create—link-with node 1 []]
end

Once the first link of any breed has been created directed or undirected, all links of that breed must
match; it's impossible to have two links of the same breed where one is directed and the other is
undirected. A runtime error occurs if you try to do it. If all link turtles of a breed die, then you can
create links of that breed that are different in flavor from the previous links.

In general, primitives that work with directed links have "in", "out", "to", and "from" in their names.
Undirected ones either omit these or use "with".

There cannot be more than one undirected link of the same breed between a pair of agents, nor
more than one directed link of the same breed in the same direction between a pair of agents. You
can have two directed links of the same breed between a pair if they are in opposite directions.

Layouts
As part of the experimental network support we have also added several different primitives that will

help you to visualize the networks. The simplest is __layout—circle which evenly spaces the
agents around the center of the world given a radius.

layout—radial is a good layout if you have something like a tree structure, though even if
there are some cycles in the tree it will still work, though as there are more and more cycles it will
probably not look as good. __layout-radial takes a root agent to be the central node places it
at (0,0) and arranges the nodes connected to it in a concentric pattern. Nodes one degree away
from the root will be arranged in a circular pattern around the central node and the next level around
those nodes and so on. __layout-radial will attempt to account for asymmetrical graphs and

Programming Guide 113

NetLogo 3.1.1 User Manual

give more space to branches that are wider. __layout-radial also takes a breed as an input so
you use one breed of links to layout the network and not another.

Given a set of anchor nodes __layout—tutte places all the other nodes at the center of mass of
the nodes it is linked to. The anchorset is automatically arranged in a circle layout with a user
defined radius and the other nodes will converge into place (this of course means that you may
have to run it several times before the layout is stable.)

layout—spring and _ layout—-magspring are quite similar and are useful for many kinds of
networks. The drawback is that they are relatively slow since they take many iterations to converge.

In both layouts the links act as springs that pull the nodes they connect toward each other and the
nodes repel each other. In the magnetic spring there is also a magnetic field pulling the nodes in a
compass direction you choose. The strength of all of these forces are controlled by inputs to the
primitives. These inputs will always have a value between 0 and 1; keep in mind that very small
changes can still affect the appearance of the network. The springs also have a length (in patch
units), however, because of all the forces involved the nodes will not end up exactly that distance
from each other. The magnetic spring layout also has a boolean input, bidirectional?, which
indicates whether the springs should push in both directions parallel to the magnetic field; if it is true
the networks will be more evenly spaced.

114 Programming Guide

NetLogo 3.1.1 User Manual

Link Shape and Direction Indicators

The default shape of all link turtles is "link". You can still set their shape using set shape
"newshape" or set—default—shape linkbreed "newshape".

All directed links have a direction indicator shape, "link direction”. This shape will be drawn over top
of the link turtle near the destination node. It will have the same color as the link turtle. The shape
will scale with the line thickness of the link turtle, see __set-line—thickness, with a minimum

size of 1.

You may edit the "link" and "link direction" shapes, but they cannot be deleted. If you wish to have
no direction indicators, remove all elements from the link direction shape.

Code Examples:Network Example , Giant Component, Small Worlds, Preferential
Attachment

Tie
Tie is an experimental part of NetLogo and primitives related to Tie are subject to change.

Because Tie is experimental, the names of the primitives begin with two underscores.

Tie connects two turtles so that the movement of the root turtle affects the location and heading of
the leaf turtle.

When the root turtle moves, the leaf turtles moves the same distance, in the same direction. The
heading of the leaf turtle is not affected. This works with forward, jump, and setting the xcor or ycor
of the root turtle.

When the root turtle turns right or left, the leaf turtle is rotated around the root turtle the same
amount. The heading of the leaf turtle is also changed by the same amount.

Note that the movements of the root affect the leaf, but not vice versa. The leaf is free to move and
turn on its own, even while remaining tied, and the root is not affected.

Programming Guide 115

NetLogo 3.1.1 User Manual

The __tie command connects a leaf turtle to a root turtle. The _untie command removes the
connection.

Code Example: Tie System Example model shows turtles tied together, including
leaf turtles being the root of other leaf turtles.

116 Programming Guide

Shapes Editor Guide

The Shapes Editor allows you to create and save turtle designs. NetLogo uses fully scalable and
rotatable vector shapes, which means it lets you create designs by combining basic geometric
elements, which can appear on—screen in any size or orientation.

Getting Started

To begin making shapes, choose Shapes Editor in the Tools menu. A new window will open listing
all the shapes currently in the model, beginning with default, the default shape. The Shapes Editor
allows you to edit shapes, create new shapes, and borrow shapes from a library or from another
model.

Importing Shapes

Every new model in NetLogo starts off containing a small core set of frequently used shapes. Many
more shapes are available by using the Import from library... button. This brings up a dialog where

you can select one or more shapes and bring them into your model. Select the shapes, then press

the Import button.

Similarly, you can use the Import from model... button to borrow shapes from another model.

Default shapes

Here are the shapes that are included by default in every new NetLogo model:

First row: default, airplane, arrow, box, bug, butterfly, car

Second row: circle, circle 2, cow, face happy, face neutral, face sad, fish
Third row: flag, flower, house, leaf, line, pentagon, person

Fourth row: plant, square, square 2, star, target, tree, triangle

Fifth row: triangle 2, truck, turtle, wheel, x

Shapes Editor Guide 117

NetLogo 3.1.1 User Manual
Shapes library

And here are the shapes in the shapes library (including all of the default shapes, too):

Ap4+=1 @144
PS®P?® "4
=2 L2

p B ¥ s =

i

1
Ql[

e = @

-‘(‘é‘
JzL D9 o

I

3
N

@,
<
=2

..*:.].l_

Creating and Editing Shapes

Pressing the New button will make a new shape. Or, you may select an existing shape and press
Edit.

118 Shapes Editor Guide

NetLogo 3.1.1 User Manual

Tools

In the upper left corner of the editing window is a group of drawing tools. The arrow is the selection
tool, which selects an already drawn element.

To draw a new element, use one of the other seven tools:

 The line tool draws line segments.
 The circle, square, and polygon tools come in two versions, solid and outline.

When using the polygon tool, click the mouse to add a new segment to the polygon. When you're
done adding segments, double click.

After you draw a new element, it is selected, so you can move, delete, or reshape it if you want:

e To move it, drag it with the mouse

» To delete it, press the Delete button.

» To reshape it, drag the small "handles" that appear on the element only when it is selected.
» To change its color, click on the new color.

Previews

As you draw your shape, you will also see it in five smaller sizes in the five preview areas found
near the bottom of the editing window. The previews show your shape as it might appear in your
model, including how it looks as it rotates. The number below each preview is the size of the
preview in pixels. When you edit the view, patch size is also measured in pixels. So for example, the
preview with "20" below it shows you how your shape would look on a turtle (of size 1) on patches
of size 20 pixels.

The rotatable feature can be turned off if you want a shape that always faces the same way,
regardless of the turtle's heading.

Overlapping Shapes

New elements go on top of previous elements. You can change the layering order by selecting an
element and then using the Bring to front and Send to back buttons.

Undo

At any point you can use the Undo button to undo the edit you just performed.

Colors

Elements whose color matches the Color that changes (selected from a drop—down menu —— the
default is gray) will change color according to the value of each turtle's color variable in your model.

Elements of other colors don't change. For example, you could create cars that always have yellow
headlights and black wheels, but different body colors.

Shapes Editor Guide 119

NetLogo 3.1.1 User Manual
Other buttons

The "Rotate Left" and "Rotate Right" buttons rotate elements by 90 degrees. The "Flip Horizontal"
and "Flip Vertical" buttons reflect elements across the axes.

These four buttons will rotate or flip the entire shape, unless an element is selected, in which case
only that element is affected.

These buttons are especially handy in conjunction with the "Duplicate" button if you want to make
shapes that are symmetrical. For example, if you were making a butterfly, you could draw the
butterfly's left wing with the polygon tool, then duplicate the wing with the "Duplicate" button, then
turn the copy into a right wing with the "Flip Horizontal" button.

Shape Design

It's tempting to draw complicated, interesting shapes, but remember that in most models, the patch
size is so small that you won't be able to see very much detail. Simple, bold, iconic shapes are
usually best.

Keeping a Shape
When the shape is done, give it a name and press the Done button at the bottom of the editing

window. The shape and its name will now be included in the list of shapes along with the "default"
shape.

Using Shapes in a Model

In the model's code or in the command center, you can use any of the shapes that are in the model.
For example, suppose you want to create 50 turtles with the shape "rabbit". Provided there is some
shape called rabbit in this model, give this command to the observer in the command center:

O> crt 50
And then give these commands to the turtles to spread them out, then change their shape:

T> fd random 15
T> set shape "rabbit"

Voila!l Rabbits! Note the use of double quotes around the shape name. Shape names are strings.

The set-default-shape command is also useful for assigning shapes to turtles.

120 Shapes Editor Guide

BehaviorSpace Guide

This guide has three parts:

« What is BehaviorSpace?: A general description of the tool, including the ideas and
principles behind it.

» How It Works: Walks you through how to use the tool and highlights its most commonly
used features.

» Advanced Usage: How to use BehaviorSpace from the command line, or from your own
Java code.

What is BehaviorSpace?

BehaviorSpace is a software tool integrated with NetLogo that allows you to perform experiments
with models. It runs a model many times, systematically varying the model's settings and recording
the results of each model run. This process is sometimes called "parameter sweeping". It lets you
explore the model's "space" of possible behaviors and determine which combinations of settings
cause the behaviors of interest.

Why BehaviorSpace?

The need for this type of experiment is revealed by the following observations. Models often have
many settings, each of which can take a range of values. Together they form what in mathematics is
called a parameter space for the model, whose dimensions are the number of settings, and in which
every point is a particular combination of values. Running a model with different settings (and
sometimes even the same ones) can lead to drastically different behavior in the system being
modeled. So, how are you to know which particular configuration of values, or types of
configurations, will yield the kind of behavior you are interested in? This amounts to the question of
where in its huge, multi-dimension parameter space does your model perform best?

For example, suppose you want speedy synchronization from the agents in the Fireflies model. The
model has four sliders —— number, cycle-length, flash—length and number-flashes —— that have
approximately 2000, 100, 10 and 3 possible values, respectively. That means there are 2000 * 100 *
10 * 3 = 600,000 possible combinations of slider values! Trying combinations one at a time is hardly
an efficient way to learn which one will evoke the speediest synchronization.

BehaviorSpace offers you a much better way to solve this problem. If you specify a subset of values
from the ranges of each slider, it will run the model with each possible combination of those values
and, during each model run, record the results. In doing so, it samples the model's parameter space
—— not exhaustively, but enough so that you will be able to see relationships form between different
sliders and the behavior of the system. After all the runs are over, a dataset is generated which you
can open in a different tool, such as a spreadsheet, database, or scientific visualization application,
and explore.

By enabling you to explore the entire "space" of behaviors a model can exhibit, BehaviorSpace can
be a powerful assistant to the modeler.

BehaviorSpace Guide 121

NetLogo 3.1.1 User Manual

Historical Note

Old versions of NetLogo (prior to 2.0) included an earlier version of the BehaviorSpace tool. That
version was much different. It wasn't nearly as flexible in the kinds of experiments it let you set up.
But, it had facilities for display and analyzing experiment results that are missing from the current
version. With the current version, it is assumed that you will use other software to analyze your
results. We hope to re—add data display and analysis facilities to a future version of BehaviorSpace.

How It Works

To begin using BehaviorSpace, open your model, then choose the BehaviorSpace item on
NetLogo's Tools menu.

Managing experiment setups

The dialog that opens lets you create, edit, duplicate, delete, and run experiment setups.
Experiments are listed by name and how by model runs the experiment will consist of.

Experiment setups are considered part of a NetLogo model and are saved as part of the model.

To create a new experiment setup, press the "New" button.

Creating an experiment setup

In the new dialog that appears, you can specify the following information. Note that you don't always
need to specify everything; some parts can be left blank, or left with their default values, depending
on your needs.

Experiment name: If you have multiple experiments, giving them different names will help you
keep them straight.

Vary variables as follows: This is where you specify which settings you want varied, and what
values you want them to take. Variables can include sliders, switches, choosers, and any global
variables in your model.

Variables can also include max—pxcor, min—pxcor, max—pycor and min—pycor, world—width,
world—height and random-seed. These are not, strictly speaking, variables, but BehaviorSpace
lets you vary them as if they were. Varying the world dimensions lets you explore the effect of world
size upon your model. Since setting world-width and world—height does not necessarily

define the bounds of the world how they are varied depends on the location of the origin. If the
origin is centered, BehaviorSpace will keep it centered so the values world-width or

world—height must be odd. If one of the bounds is at zero that bound will be kept at zero and the
other bound will move, for example if you start with a world with min—pxcor = 0 max—pxcor = 10
and you vary world-width like this:

["'world—-width" [11 1 14]]

122 BehaviorSpace Guide

NetLogo 3.1.1 User Manual

min—pxcor will stay at zero and max—pxcor will setto 11, 12, and 13 for each of the runs. If
neither of these conditions are true, the origin is not centered, nor at the edge of the world you
cannot vary world—height or world-width directly but you should vary max—pxcor,

max—pycor, min—pxcor and min—pycor instead.

Varying random-seed lets you repeat runs by using a known seed for the NetLogo random
number generator. Note that you're also free to use the random-seed command in your
experiment's setup commands. For more information on random seeds, see the_Random Numbers
section of the Programmer's Guide.

You may specify values either by listing the values you want used, or by specifying that you want to
try every value within a given range. For example, to give a slider named number every value from
100 to 1000 in increments of 50, you would enter:

[*number" [100 50 1000]]

Or, to give it only the values of 100, 200, 400, and 800, you would enter:

["'number” 100 200 400 800]

Be careful with the brackets here. Note that there are fewer square brackets in the second example.
Including or not including this extra set of brackets is how you tell BehaviorSpace whether you are
listing individual values, or specifying a range.

Also note that the double quotes around the variable names are required.

You can vary as many settings as you want, including just one, or none at all. Any settings that you
do not vary will retain their current values. Not varying any settings is useful if you just want to do
many runs with the current settings.

What order you list the variables in determines what order the runs will be done in. All values for a
later variable will be tried before moving to the next value for an earlier variable. So for example if
you vary both x and y from 1 to 3, and x is listed first, then the order of model runs will be: x=1 y=1,
x=1y=2, x=1 y=3, x=2 y=1, and so on.

Repetitions: Sometimes the behavior of a model can vary a lot from run to run even if the settings
don't change, if the model uses run numbers. If you want to run the model more than once at each
combination of settings, enter a higher number here than one.

Measure runs using these reporters: This is where you specify what data you want to collect from
each run. For example, if you wanted to record how the population of turtles rose and fell during
each run, you would enter:

count turtles

BehaviorSpace Guide 123

NetLogo 3.1.1 User Manual

You can enter one reporter, or several, or none at all. If you enter several, each reporter must be on
a line by itself, for example:

count frogs
count mice
count birds

If you don't enter any reporters, the runs will still take place. This is useful if you want to record the
results yourself your own way, such as with the export—world command.

Measure runs at every tick: Normally NetLogo will measure model runs at every tick, using the
reporters you entered in the previous box. If you're doing very long model runs, you might not want
all that data. Uncheck this box if you only want to measure each run after it ends.

Setup commands: These commands will be used to begin each model run. Typically, you will enter
the name of a procedure that sets up the model, typically setup. But it is also possible to include
other commands as well.

Go commands: These commands will be run over and over again to advance to the model to the
next "tick". Typically, this will be the name of a procedure, such as go, but you may include any
commands you like.

Stop condition: This lets you do model runs of varying length, ending each run when a certain
condition becomes true. For example, suppose you wanted each run to last until there were no
more turtles. Then you would enter:

not any? turtles

If you want the length of runs to all be of a fixed length, just leave this blank.

The run may also stop because the go commands use the stop command, in the same way that
stop can be used to stop a forever button. The stop command may be used directly in the go
commands, or in a procedure called directly by the go commands. (The intent is that the same go
procedure should work both in a button and in a BehaviorSpace experiment.) Note that the step in
which stop is used is considered to have been aborted, so no results will be recorded for that step.
Therefore, the stopping test should be at the beginning of the go commands or procedure, not at the
end.

Final commands: These are any extra commands that you want run once, when the run ends.
Usually this is left blank, but you might use it to call the export—-world command or record the
results of the run in some other way.

Time limit: This lets you set a fixed maximum length for each run. If you don't want to set any
maximum, but want the length of the runs to be controlled by the stop condition instead, enter 0.

124 BehaviorSpace Guide

NetLogo 3.1.1 User Manual

Running an experiment
When you're done setting up your experiment, press the "OK" button, followed by the "Run" button.

You will be prompted to select the formats you would like the data from your experiment saved in.
Data is collected for each interval, run or tick, according to the setting of Measure runs at every
tick option.

Table format lists each interval in a row, with each metric in a separate column. Table data is written
to the output file as each run completes. Table format is suitable for automated processing of the
data, such as importing into a database or a statistics package.

Spreadsheet format calculates the min, mean, max, and final values for each metric, and then lists
each interval in a row, with each metric in a separate column. Spreadsheet data is more
human-readable than Table data, especially if imported into a spreadsheet application.

(Note however that spreadsheet data is not written to the results file until the experiment finishes.
Since spreadsheet data is stored in memory until the experiment is done, very large experiments
could run out of memory. And if anything interrupts the experiment, such as a runtime error, running
out of memory, or a crash or power outage, no results will be written. For long experiments, you
may want to use both spreadsheet and table formats so that if something happens you'll at least get
a table of partial results.)

After selecting your output formats, BehaviorSpace will prompt you for the name of a file to save the
results to. The default name ends in ".csv". You can change it to any name you want, but don't
leave off the ".csv" part; that indicates the file is a Comma Separated Values (CSV) file. This is a
plain—text data format that is readable by any text editor as well as by most popular spreadsheet
and database programs.

A dialog will appear, titled "Running Experiment". In this dialog, you'll see a progress report of how
many runs have been completed so far and how much time has passed. If you entered any
reporters for measuring the runs, and if you left the "Measure runs at every tick" box checked, then
you'll see a plot of how they vary over the course of each run.

You can also watch the runs in the main NetLogo window. (If the "Running Experiment" dialog is in
the way, just move it to a different place on the screen.) The view and plots will update as the model
runs. If you don't need to see them update, then use the checkboxes in the "Running Experiment"
dialog to turn the updating off. This will make the experiment go faster.

If you want to stop your experiment before it's finished, press the "Abort" button. But note that you'll
lose any results that were generated up to that point.

When all the runs have finished, the experiment is complete.

Advanced usage

Running from the command line

It is possible to run BehaviorSpace experiments "headless"”, that is, from the command line, without
any graphical user interface (GUI). This is useful for automating runs on a single machine or a

BehaviorSpace Guide 125

NetLogo 3.1.1 User Manual

cluster of machines.

No Java programming is required. Experiment setups can be created in the GUI and then run later
from the command line, or, if you prefer, you can create or edit experiment setups directly using
XML.

It is easiest if you create your experiment setup ahead of time in the GUI, so it is saved as part of
the model. To run an experiment setup saved in a model, here is an example command line:

java —server —-Xms16M -Xmx512M —cp NetLogo.jar \
org.nlogo.headless.HeadlessWorkspace \
——model Fire.nlogo \
——experiment experimentl

After the named experiment has run, the results are sent to standard output in spreadsheet format,
as CSV. (To change this, see below.)

When running the HeadlessWorkspace class as an application, it forces the system property
java.awt.headless to be true. This tells Java to run in headless mode, allowing NetLogo to run
on machines when a graphical display is not available.

Note the user of the —server flag to tell Java to optimize performance for "server" type
applications; we recommend this flag for best performance in most situations.

Note the use of —Xmx to specify a maximum heap size of 512 megabytes. If you don't specify a
maximum heap size, you will get your VM's default size, which may be unusably small. (512
megabytes is an arbitrary size which should be more than large enough for most models; you can
specify a different limit if you want.) Note also that —Xms is used to specify a larger-than—default
initial heap size. This helps some models run faster by making garbage collection more efficient.

The ——model argument is used to specify the model file you want to open.

The ——experiment argument is used to specify the name of the experiment you want to run. (At
the time you create an experiment setup in the GUI, you assign it a name.)

Here's another example that shows some additional, optional arguments:

java —server —-Xms16M Xmx512M —cp NetLogo.jar \
org.nlogo.headless.HeadlessWorkspace \
——model Fire.nlogo \
——experiment experiment2 \
——max—pxcor 100\
——min—pxcor —100 \
——max—pycor 100 \
——min-pycor =100\
——no-results

Note the use of the optional ——max—pxcor, ——max—pycor, etc. arguments to specify a different
world size than that saved in the model. (It's also possible for the experiment setup to specify values
for the world dimensions; if they are specified by the experiment setup, then there is no need to
specify them on the command line.)

126 BehaviorSpace Guide

NetLogo 3.1.1 User Manual

Note also the use of the optional ——no-results argument to specify that no output is to be
generated. This is useful if the experiment setup generates all the output you need by some other
means, such as exporting world files or writing to a text file.

Yet another example:

java —server —-Xms16M Xmx512M —cp NetLogo.jar \
org.nlogo.headless.HeadlessWorkspace \
——model Fire.nlogo \
——experiment experiment2 \
——table table—output.csv \
——spreadsheet spreadsheet-output.csv

The optional ——table <filename> argument specifies that output should be generated in a table
format and written to the given file as CSV data. If — is specified as the filename, than the output is
sent to the standard system output stream. Table data is written as it is generated, with each
complete run.

The optional ——spreadsheet <filename> argument specified that spreadsheet output should

be generated and written to the given file as CSV data. If - is specified as the filename, than the
output is sent to the standard system output stream. Spreadsheet data is not written out until all
runs in the experiment are finished.

Note that it is legal to specify both ——table and ——spreadsheet, and if you do, both kinds of
output file will be generated.

The default output behavior, when no output formats are specified, is to send table output to the
system standard output stream.

Here is one final example that shows how to run an experiment setup which is stored in a separate
XML file, instead of in the model file:

java —server —-Xms16M -Xmx512M —cp NetLogo.jar \
org.nlogo.headless.HeadlessWorkspace \
——model Fire.nlogo \
—-setup—file fire-setups.xml \
——experiment experiment3

If the XML file contains more than one experiment setup, it is necessary to use the ——experiment
argument to specify the name of the setup to use.

The next section has information on how to create standalone experiment setup files using XML.

Setting up experiments in XML

We don't yet have detailed documentation on authoring experiment setups in XML, but if you
already have some familiarity with XML, then the following pointers may be enough to get you
started.

The structure of BehaviorSpace experiment setups in XML is determined by a Document Type

Definition (DTD) file. The DTD is stored in NetLogo.jar, as system/behaviorspace.dtd. (JAR
files are also zip files, so you can extract the DTD from the JAR using Java's "jar" utility or with any

BehaviorSpace Guide 127

NetLogo 3.1.1 User Manual

program that understands zip format.)

The easiest way to learn what setups look like in XML, though, is to author a few of them in
BehaviorSpace's GUI, save the model, and then examine the resulting .nlogo file in a text editor.
The experiment setups are stored towards the end of the .nlogo file, in a section that begins and
ends with a experiments tag. Example:

<experiments>
<experiment name="experiment" repetitions="10" runMetricsEveryTick="true">
<setup>setup</setup>
<go>go</go>
<exitCondition>not any? fires</exitCondition>
<metric>burned-trees</metric>
<enumeratedValueSet variable="density">
<value value="40"/>
<value value="0.1"/>
<value value="70"/>
</enumeratedValueSet>
</experiment>
</experiments>

In this example, only one experiment setup is given, but you can put as many as you want between
the beginning and ending experiments tags.

Between looking at the DTD, and looking at examples you create in the GUI, it will hopefully be
apparent how to use the tags to specify different kind of experiments. The DTD specifies which tags
are required and which are optional, which may be repeated and which may not, and so forth.

When XML for experiment setups is included in a model file, it does not begin with any XML
headers, because not the whole file is XML, only part of it. If you keep experiment setups in their
own file, separate from the model file, then the extension on the file should be .xml not .nlogo, and
you'll need to begin the file with proper XML headers, as follows:

<?xml version="1.0" encoding="us—-ascii"?>
<IDOCTYPE experiments SYSTEM "behaviorspace.dtd">

The second line must be included exactly as shown. In the first line, you may specify a different
encoding than us—ascii, such as UTF-8, but NetLogo doesn't support non—ASCII characters in
most situations, so specifying a different encoding may be pointless.

Controlling API

If BehaviorSpace is not sufficient for your needs, a possible alternative is to use our Controlling API,
which lets you write Java code that controls NetLogo. The API lets you run BehaviorSpace
experiments from Java code, or, you can write custom code that controls NetLogo more directly to
do BehaviorSpace-like things. See the_Controlling section of the User Manual for further details on
both possibilities.

Conclusion

BehaviorSpace is still under development. We'd like to hear from you about what what additional
features would be useful to you in your work. Please write us at_feedback@ccl.northwestern.edu.

128 BehaviorSpace Guide

mailto:feedback@ccl.northwestern.edu

HubNet Guide

This section of the User Manual introduces the HubNet system and includes instructions to set up
and run a HubNet activity.

HubNet is a technology that lets you use NetLogo to run participatory simulations in the classroom.
In a participatory simulation, a whole class takes part in enacting the behavior of a system as each
student controls a part of the system by using an individual device, such as a networked computer
or TI-83+ calc